

High-Efficiency Radius Cutter with Multiple Edges

High-Efficiency Radius Cutter with Multiple Edges

OEconomical 8-edge insert

 OLow Cutting Force due to our helical cutting edge design
 OHigher Stability with flat lock structure

Advancing Productivity

- KYOCERA. Contributing To Advancing Productivity -

MRW

The MRW Radius Cutter lowers cutting costs and increases efficiency! Double-faced inserts improve the milling of a wide variety of materials

Economical 8-edge insert

POINT 2 The perfect combination of sharpness & cutting-edge strength

Improved edge strength due to obtuse edge

POINT 3 Helical cutting edge design with maximum axial rake angle of 12° reduces cutting force as equivalent as positive inserts

POINT 4

Flat Lock Structure holds insert firmly Prevents insert rotation during machining to provide stable cutting

Flat Lock Structure

Wide flat binding face •Receives even cutting forces •Prevents insert rotation

2 wide flat binding faces

The MRW's wide lineup includes 4 grades and 3 Chipbreakers which enables extend tool life of your cutters! Applicable to steel, stainless steel, and heat-resistant alloys machining.

Wc	Applicable Insert Grade	Applicable Chipbreaker	
P Carbon Steel / Alloy Steel / Die Steel	PR1525	GM/SM/GH Chipbreaker	
K Gray Cast Iron / Nodular Cast Iron	PR1510	GH/GM Chipbreaker	
S Ni-based Heat-resistant Alloys	M Martensitic Stainless Steel	CA6535	SM/GM Chipbreaker
S Ni-based Heat-resistant Alloys S Titanium Alloys	M Austenitic Stainless Steel M Precipitation-hardened Stainless Steel	PR1535	SM/GM Chipbreaker

For Chipbreaker Selection and Recommended Cutting Conditions P6

(mm)

Wear

1st recommendation SM Chipbreaker

MRW Face Mill (with coolant hole)

Toolholder Dimensions

	De	escription	Stock	No. of inserts		Dimension (mm)						Rake (ke Angle (°) Coolant Hole		Drawing	Weight (kg)	Max. Revolution																		
					r	φD	φ D1	φd	φ d1	φd2	Н	Е	a	b	S	A.R.	R.R.	1			(min ⁻)														
	MRW	080R-12-6T		6		20	70	25.4	20	12		27	6	0.5					Fig. 1	1.2	12 000														
6		080R-12-8T		8	6	00	70	23.4	20	13	50	21	0	9.5	60	120	-15 5°		Fig. I	1.1	12,000														
eç,		100R-12-7T		7	0	100	78	31 75	46		50	3/	8	12 7	0.0	712	-10.0		Fig 2	1.5	10,600														
р С		100R-12-9T		9		100	10	51.75	40			54	0	12.7					1 ig. 2	1.4	10,000														
ि म्ह	MRW	080R-16-6T		6		80	70	25 /	20	13		27	6	9.5					Fig 1	1.1	11 000														
		080R-16-7T		7		00	10	23.4	20	10	50	21	0	3.5					Tig. I	1.1	11,000														
ä		100R-16-6T		6	Q	100	78	31 75	16		50	34	Q	127	80	. 110	-16 5°			1.4	0 600														
ore		100R-16-8T		8	0	100	10	51.75	40			54	0	12.7	0.0	T 11	-10.5		Fig 2	1.4	3,000														
_		125R-16-8T		8		125	80	38.1	55		63	38	10	15.0]																	1 19. 2	2.6	8 560
		125R-16-10T	•	10		125	03	50.1	55		05	50	10	15.5						2.6	0,500														
	MRW	050R-12-5T-M		5		50	18		18											0.3	16,000														
		050R-12-6T-M		6		50	40	22		11	40	21	6.3	10.4						0.3	10,000														
		063R-12-6T-M		6		63	60		10				0.0	10.4				Ves	Fig. 1	0.6	1/ 000														
		063R-12-7T-M		7	6	00	00		10						60	±12°	-15.5°	5°	1 19. 1	0.6	14,000														
		080R-12-6T-M		6	0	80	70	27	20	13		24	7	12 4	0.0	+12				1.1	12 000														
		080R-12-8T-M		8		00	10	21	20	10	50	27	'	12.4						1.1	12,000														
S		100R-12-7T-M		7		100	78	32	46			30	8	111					Fig 2	1.5	10,600														
be		100R-12-9T-M		9		100	10	02	-10			00		14.4					1 19. 2	1.4	10,000														
S S	MRW	063R-16-5T-M		5		63	60	22	19	11	40	21	6.3	10.4						0.5	12 800														
etri		063R-16-6T-M		6		00	00	~~~	10		-10	21	0.0	10.4					Fig 1	0.5	12,000														
l≥		080R-16-6T-M	•	6		80	70	27	20	13		24	7	12 4					1 19. 1	1.1	11 000														
		080R-16-7T-M	′T-M ● 7	8	00	10	21	20		50		<u>'</u>	12.4	80	±11°	-16 5°			1.0	11,000															
		100R-16-6T-M		6	U	100	78	32	46			30	8	14 4	0.0		10.0			1.4	9 600														
		100R-16-8T-M	•	8		100	,0	52	-0	_				14.4					Fig 2	1.3	0,000														
		125R-16-8T-M		8		125	89	40	55		63	33	q	16 /					9.2	2.6	8 560														
		125R-16-10T-M		10		120	03	40	55		00	00		10.4						2.5	0,000														

Spare Parts and Applicable Inserts

Description	Clamp Screw	Wre	nch	Anti-seize Compound	Mounting Bolt	Applicable
		DTPM-15	TTP-20	AND A		inserts
MRW 050R-12		וחדח	1.15		HH10v30	
063R-12	3D-40031RP		VI-15	MD_1	11110,000	DOM: 112
080R-12	Recomn	Clamp 2 EN m	for Insert	1715 - 1	HH12x35	NOIWIO 12
100R-12		Clamp 3.514-11			-	
MRW 063R-16					HH10x30	
080R-16	SB-501401RP	11F	-20		HH12x35	DOMUTO
100R-16	Recomn	nended Torque	for Insert	IVIP-1		RUIVIU Ib
125R-16		Giamp 4.5N·m			-	

•: Std. Item

Caution with Max. Revolution

When running an endmill or a cutter at the maximum revolution, the insert or cutter may be damaged by centrifugal force.

• Coat Anti-seize Compound (MP-1) thinly on portion of taper and thread when insert is fixed.

• S is Maximum ap. For more details, see page 6.

Recommended Cutting Conditions
P6

MRW End Mill (with coolant hole)

Toolholder Dimensions

							Dimensi	ion (mm)		Rake A	ngle (°)			Max.	
	De	escription	Stock	inserts	r	φD	φd	L	e	S	A.R. (MAX.)	R.R.	Hole	Drawing	Revolution (min ⁻¹)	
æ	MRW	32-S32-12-3T	•	3		32	20	140				-20°		Fig. 1	22,000	
aigh		40-S32-12-4T	•	4	6	40	32	160	40	6.0	+12°	-16.5°	Yes	Fig. 0	18,800	
(Str		50-S42-12-5T	•	5	50 42 170		-15.5°		FI9. 2	16,000						
ard	MRW	40-S32-16-3T	•	3		40	32	160	40			-18°			17,200	
and		50-S42-16-4T	•	4	8	50	40	170	40	8.0	+11°	10.5%	Yes	Fig. 2	14,800	
N N		63-S42-16-5T	•	5		63	42	170	50			-10.5			12,800	
ht)	MRW	32-S32-12-2T-200	•	2		32	20	200				-20°		Fig. 1	22,000	
traig		40-S32-12-3T-200	•	3	6	40	52	200	40	6.0	+12°	+12° -16.5°	Yes	Fig. 2	18,800	
k (Si		50-S42-12-4T-300	•	4		50	42	300]			-15.5°			16,000	
han	MRW	40-S32-16-2T-200	•	2		40	32	200	40			-18°			17,200	
S DL		50-S42-16-3T-300	•	3	8	50	40	200	40	8.0	+11°	16.50	Yes	Fig. 2	14,800	
Lo		63-S42-16-4T-300	•	4		63	42	300	50			-10.5			12,800	
	MRW	32-W32-12-3T	•	3		32	20	102				-20°		Fig. 3	22,000	
don		40-W32-12-4T	•	4	6	40	52	100	40	6.0	+12°	-16.5°	Yes	Fig. 4	18,800	
Nel		50-W40-12-5T	•	5		50	40	110				-15.5°		FIQ. 4	16,000	
ard	MRW	40-W32-16-3T	•	3		40	32	100	40			-18°			17,200	
and		50-W40-16-4T	•	4	8	50	40	110	40	8.0	+11°	+11°	+11°	Yes	Fig. 4	14,800
st		63-W40-16-5T	•	5		63	40	120	50			-10.5			12,800	

•: Std. Item

• Caution with Max. Revolution When running an endmill or a cutter at the maximum revolution, the insert or cutter may be damaged by centrifugal

• Coat Anti-seize Compound (MP-1) thinly on portion of taper and thread when insert is fixed.

• S is Maximum ap. For more details,

force.

see page 6.

Spare Parts and Applicable Inserts

Description	Clamp Screw	Wre	ench	Anti-seize Compound	Applicable
		DTPM-15	TTP-20	The states	inserts
MRW12	SB-4085TRP Recomm	DTPI nended Torque for Clamp 3.5N⋅m	M-15 Insert	MP-1	ROMU12
MRW16	SB-50140TRP Recomm	TTF nended Torque for Clamp 4.5N⋅m	P-20 Insert	MP-1	ROMU16

Recommended Cutting Conditions -> P6

Classification of Usage P Carbon Steel / Alloy Steel *	Milling Inser	ts (with hole)																				
Classification of Usage P Die Steel *			_	Carbon Steel	/ Alloy	Steel					*											
*: Roughing / 1st Choice Austenitic Stainless Steel (SUS304) * </td <td>Classi</td> <td>P</td> <td colspan="5">Die Steel</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>ge</td>	Classi	P	Die Steel						*					ge								
Martensitic Stainless Steel (SUS403)				Austenitic Stat	inless	Steel (S	SUS30	4)		*	☆					Pa						
*: Roughing / 1st Choice Precipitation-hardened Stainless Steel * 1			М	Martensitic Sta	ainless	s Steel	(SUS4	03)		☆			*			JCe						
*: Roughing / 2nd Choice K Gray Cast Iron *	★: Roughing	★: Roughing / 1st Choice		Precipitation-h	narden	ed Sta	inless (Steel		*						erer						
I: Finishing / 1st Choice Nodular Cast Iron * <th *<="" colspan="6" td="" th<=""><td>☆: Roughing</td><td>/ 2nd Choice</td><td>V</td><td>Gray Cast Iror</td><td>ı</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td>Refe</td></th>	<td>☆: Roughing</td> <td>/ 2nd Choice</td> <td>V</td> <td>Gray Cast Iror</td> <td>ı</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>Refe</td>						☆: Roughing	/ 2nd Choice	V	Gray Cast Iror	ı							*				Refe
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	■: Finishing /	1st Choice	n	Nodular Cast	Iron							*				erF						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	□: Finishing /	2nd Choice		Heat-resistant	Alloys	6				+			35			old						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(In case ha	ardness is under 45 HRC)	S	(Ni-based Hea	at-resis	stant Al	loys)						~			еН						
H Hard Materials Image: A Image: A <th< td=""><td></td><td></td><td></td><td>Titanium Alloy</td><td>S</td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>\$</td><td></td><td></td><td></td><td>abl</td></th<>				Titanium Alloy	S					*		\$				abl						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			н	Hard Materials	S						☆			Ĺ		plic						
Image: constraint of the state of the s		Insert	D	escription	Dimension (mm)				MEGACOAT NANO			CVD Coated			Ap							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					φA	Т	φd	W	r	PR1535	PR1525	PR1510	CA6535									
General Purpose Image: Constraint of the state of	0		ROMU	1204M0ER-GM	12	4.75	4.6	11.8	6	•	•	•	•									
Low Cutting Force T ROMU 1204M0ER-SM 12 4.75 4.6 11.8 6 • • • P3 ROMU 1204M0ER-SM 16 5.48 6.2 15.8 8 • • • • • • ROMU 1204M0ER-SM 16 5.48 6.2 15.8 8 •	General Purpose	30		1605M0ER-GM	16	5.48	6.2	15.8	8	•	•	•	•									
Low Cutting Force Image: Constraint of the second sec	\bigcirc		ROMU	1204M0ER-SM	12	4.75	4.6	11.8	6	•	•		•			P3						
ROMU 1204M0ER-GH 12 4.75 4.6 11.8 6 • • • •	Low Cutting Force			1605M0ER-SM	16	5.48	6.2	15.8	8	•	•		•			P4						
	0		ROMU	1204M0ER-GH	12	4.75	4.6	11.8	6	•	•	•	•									
Tough Edge (Heavy Milling) 1605M0ER-GH 16 5.48 6.2 15.8 8 • • • •	Tough Edge (Heavy Milling)			1605M0ER-GH	16	5.48	6.2	15.8	8	•	•	•	•									

How to mount an insert

- 1.Be sure to remove dust and chips from the insert mounting pocket.
- 2. Apply anti-seize compound on portion of taper and thread of clamp screw.
 Attach the screw to the front end of the wrench. While lightly pressing the insert against the constraint surfaces, put the screw into the hole of the insert and tighten.
 (See Fig. 1)
- 3.Wrenches and clamp screws are "Torx Plus".
 - ① Fig. 2 wrench is for MRW-12. (Straight grip)
 - ②Fig. 3 wrench is for MRW-16. (T-shaped grip)
 - Use a "Torx Plus" Wrench for tightening the clamp screw.
 - *If a "Torx" Wrench (Fig. 4) is used to tighten, the screw head might become damaged and then the screw cannot be removed.
- 4.When tightening the screw, make sure that the wrench is parallel to the screw. For recommended torque, **see page 3 and 4.**
- 5.After tightening the screw, make sure that there is no clearance between the insert seat surface and the bearing surface of the holder or between the insert side surfaces and the constraint surface of the holder.

If there is any clearance, remove the insert and mount it again according to the above steps.

Torx Wrench (Do NOT use for MRW!)

5

	Recommen	ded Chipbreak	er (fz mm/t)	Reco	ommended Inse	ert Grade (Vc:m	/min)
Workpiece Material	ROMU12ap=3m ROMU16ap=4m Recommended fee for ROMU12 type:	m m ed rate (standard va ap=3mm, ROMU16	lue) S type: ap=4mm	М	CVD Coated Carbide		
	GM	SM	GH	PR1535	PR1525	PR1510	CA6535
Carbon Steel (SxxC)	★ 0.1~ 0.2 ~0.3	☆ 0.06~ 0.15 ~0.2	☆ 0.15~ 0.3 ~0.35	-	★ 120~ 180 ~250	-	-
Alloy Steel (SCM)	★ 0.1~ 0.2 ~0.3	☆ 0.06~ 0.15 ~0.2	☆ 0.15~ 0.3 ~0.35	-	★ 100~ 160 ~220	-	-
Die Steel (SKD/NAK)	★ 0.1~ 0.15 ~0.25	☆ 0.06~ 0.12 ~0.2	☆ 0.15~ 0.2 ~0.3	-	★ 80~ 140 ~180	-	-
Austenitic Stainless Steel (SUS304)	☆ 0.1~ 0.15 ~0.2	★ 0.06~ 0.12 ~0.2	-	★ 100~ 160 ~200	★ 100~ 160 ~200	-	-
Martensitic Stainless Steel (SUS403)	☆ 0.1~ 0.15 ~0.2	★ 0.06~ 0.12 ~0.2	-	★ 150~ 200 ~250	-	-	★ 180~ 240 ~300
Precipitation-hardened Stainless Steel (SUS630)	★ 0.1~ 0.15 ~0.2	☆ 0.06~ 0.12 ~0.2	-	★ 90~ 120 ~150	-	-	-
Gray Cast Iron (FC)	★ 0.1~ 0.2 ~0.3	-	☆ 0.15~ 0.3 ~0.35	-	-	★ 120~ 180 ~250	-
Nodular Cast Iron (FCD)	★ 0.1~ 0.15 ~0.25	-	☆ 0.15~ 0.2 ~0.3	-	-	★ 100~ 150 ~200	-
Ni-based Heat-resistant Alloys	★ 0.1~ 0.12 ~0.15	☆ 0.06~ 0.1 ~0.15	-	★ 20~ 30 ~50	-	-	☆ 20~ 40 ~50
Titanium Alloys (Ti-6Al-4V)	☆ 0.1~ 0.12 ~0.15	★ 0.06~ 0.1 ~0.15	-	★ 40~ 60 ~80	-	☆ 30~ 50 ~70	-

*Machining with coolant is recommended for Ni-based heat-resistant alloys and titanium alloys.

*The figure in **bold font** is the **median value of the recommended cutting conditions**. Adjust the cutting speed and the feed rate within the above values according to the actual machining conditions.

*Recommended feed rate is the reference value when ap is rɛ/2 (3mm for ROMU12, 4mm for ROMU16).

For lower ap than the above conditions, the conversion factor in the following table is recommended.

Conversion factor for feed per tooth by depth of cut (ap)

Incort	ар	op (mov)		Conversion factor for feed per tooth									
Insert	(recommended)	ap (max)	ap=0.5mm	ap=1mm	ap=2mm	ap=3mm	ap=4mm						
ROMU12 type	3mm or less	6mm	2.1	1.5	1.1	1.0 (Standard)	_						
ROMU16 type	4mm or less	8mm	2.4	1.7	1.3	1.1	1.0 (Standard)						

• Example (ROMU12 type, Carbon Steel, GM Chipbreaker, ap=1mm)

Recommended Cutting Conditions

fz=0.2mm/t	~	1.5	_	fz=0.3mm/t
(Standard value for Carbon Steel / GM Chipbreaker)	^	(Conversion factor for ROMU12 / ap = 1mm)	-	(Recommended feed per tooth)

* Recommended ap: 3mm or less for ROMU12, 4mm or less for ROMU16

Except the case that ap temporally surpass the recommended ap, machining under the recommended ap is recommended.

Corner R shape during machining

Corner R shape during machining with MRW (See figure to the right.)

Insert	ap (max.)	х	Y
ROMU12 type	6mm	3mm	0.1mm
ROMU16 type	8mm	4mm	0.1mm

* When machining with larger ap than the recommended ap (X), there is a gap (Y) between the workpiece corner and insert corner R (rε). * The above figure is estimation. There is a ±0.2mm variation depending on the cutting conditions.

Case Studies

Applications

Facing

Shouldering

Contouring

Ramping / Profiling

*The MRW is not applicable to 3D machining, such as Ramping and Profiling.

 Downloadable high resolution cutting tools catalogues
Product usage videos

Turning, milling and drilling calculation tools
 KYOCERA instant contact

Advancing Productivity

