
Double-sided 6-edge Insert, Low Cutting Force Cutter

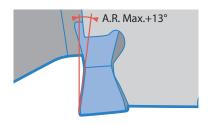
MFWN

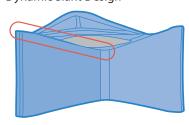
Economical Double-sided 6-edge Insert. Superior Fracture Resistance due to Thick Edge Design

Sharp Cutting due to Lower Cutting Forces
Resistant to Chattering and Applicable to Long Overhang
MEGACOAT NANO Coated Insert Grade for Long Tool Life

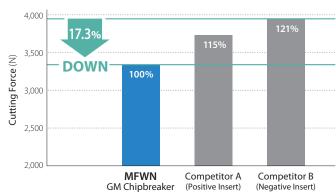
Double-sided 6-edge Insert, Low Cutting Force Cutter

MFWN


Economical Double-sided 6-edge Insert. Superior Fracture Resistance due to Thick Edge Design. Available for a Wide Range of Applications and Now Including PDL025 DLC Coated Insert Grade for Aluminum Machining

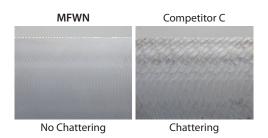

Sharp Cutting due to Lower Cutting Forces

Low Cutting Force due to Steep Rake Angle

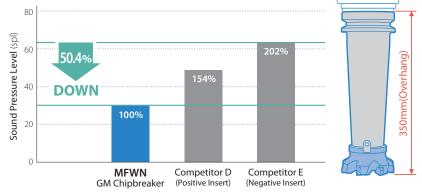

Dynamic Slant Design Reduces Initial Impact when Cutting Edge Enters the Workpiece

Dynamic Slant Design

Cutting Force Comparison (In-house Evaluation)


Cutting Force is the Resultant Force of the Principal Force and the Feed Force

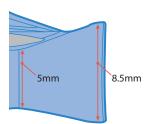
2


Reduced Chattering

Resistant to Chattering due to Low Cutting Force Design and applicable to long overhang

Surface Roughness Comparison (In-house Evaluation)

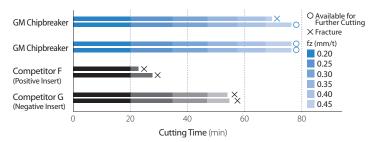
Cutting Noise Comparison (In-house Evaluation)



Cutting Conditions: Vc = 200 m/min, ap \times ae = 3 \times 15 mm, fz = 0.1 mm/t Workpiece: S50C Cutter Dia. Ø80 mm (7 Inserts)

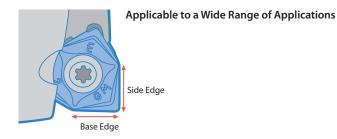
3

Superior Fracture Resistance with Thick Edge Design


Cutting Edge Thickness: 5 - 8.5mm

Stable Clamping with the Unique Insert Face Design

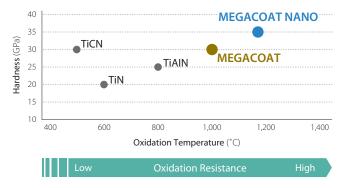
Fracture Resistance Comparison (In-house Evaluation)



Cutting Conditions: Vc = 100 m/min, ap \times ae = 2 \times 100 mm, fz = 0.2 \sim 0.45 mm/t, Dry Workpiece: SCM440H(38 \sim 42HS) Interrupted with a Slot in the Workpiece

Neutral Inserts

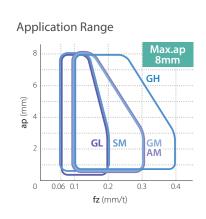
Available for Shouldering and Facing
Neutral Inserts are Applicable to Left-hand Cutters
(Custom Order)



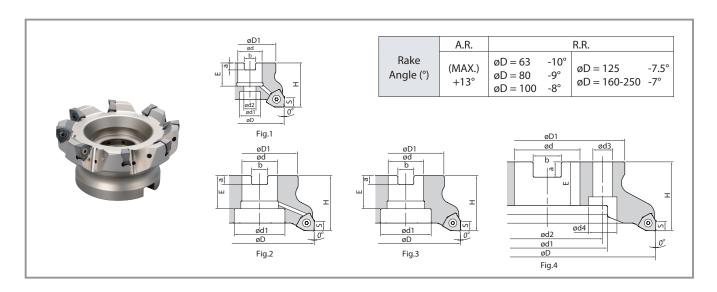
MEGACOAT NANO Coated Insert Grade for Long Tool Life

PR1525 for steel, PR1510 for cast iron and PR1535 for Ni-base heat-resistant alloy, titanium alloy and precipitation-hardened stainless steel

Prevents wear and fracturing with high hardness (35GPa) and superior oxidation resistance (oxidation temperature: 1,150 $^{\circ}$ C)


Coating Property

Extensive Insert Lineup Covering Various Applications


Chipbreaker	Applications	Shape			
GM	General Purpose				
SM	Low Cutting Force				
GH	Heavy Milling				
GL	Surface-Finish Oriented				
AM	Aluminum / Non-ferrous Metals				

Smooth Chip Evacuation

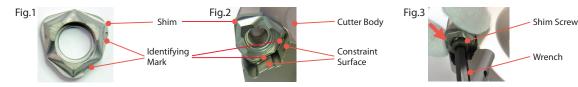
Properly Curled Chips (The Photo was Taken by a High Speed Camera)

Toolholder Dimensions

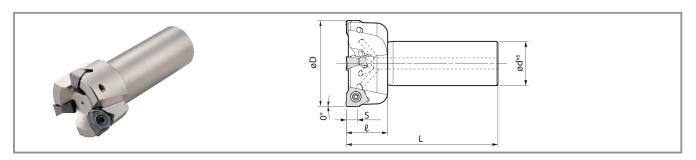
		Dagarina		Charle	No. of					Dimer	nsions (mr	n)					Drawing	Weight	Shim	Coolant			
		Descript	ion	Stock	Inserts	øD	øD1	ød	ød1	ød2	Н	E	a	b	ød3	ød4	Drawing	(kg)	Snim	Hole			
		MFWN	90080R-4T	•	4	80	60	25.4	20	13		27	6	9.5			Fig.1	1.0					
	ر ب		90100R-5T	•	5	100	70	31.75	46		50	34	8	12.7				1.3		Yes			
	Pit		90125R-6T	•	6	125	87	38.1	55	_			10	15.9	_	_	Fig.2	2.6	.,				
	ırse		90160R-8T	•	8	160	102	50.8	72		63	38	11	19.1			Fig.3	3.9	Yes				
	Coarse Pitch		90200R-10T	•	10	200	4.40	47.605	440	404.6	63	40		25.4	4.0	2.	F. 4	6.3		No			
			90250R-12T	•	12	250	142	47.625	110	101.6		40	14	25.4	18	26	Fig.4	8.7					
Sec		MFWN	90080R-5T	•	5	80	60	25.4	20	13	50	27	6	9.5			Fig.1	1.0					
Bore Dia. Inch Spec	ج		90100R-7T	•	7	100	70	31.75	46		50	34	8	12.7			Eig 2	1.4		Yes			
Inch	Fine Pitch		90125R-8T	•	8	125	87	38.1	55	-		38	10	15.9	_	_	Fig.2	2.7	No				
<u>ë</u> .	ne		90160R-10T	•	10	160	102	50.8	72		63	38	11	19.1			Fig.3	4.0	INO				
e D	证		90200R-12T	•	12	200	142	47.625	110	101.6	03	40	14	25.4	18	26	Fig.4	6.6		No			
Bor			90250R-14T	•	14	250	142	47.023	110	101.0		40	14	25.4	10	20	rig.4	8.9					
	4	MFWN	90080R-7T	•	7	80	60	25.4	20	13	50	27	6	9.5			Fig.1	1.1					
	Extra Fine Pitch		90100R-9T	•	9	100	70	31.75	46		30	34	8	12.7			Fig.2	1.3		Yes			
	ne F		90125R-12T	•	12	125	87	38.1	55	_		38	10	15.9	_	_	rig.z	2.7	No				
	ΞE		90160R-14T	•	14	160	102	50.8	72		63	30	11	19.1			Fig.3	4.1	NO				
	xtrë		90200R-16T	•	16	200	142	47.625	110	101.6	03	40	14	25.4	18	26	Fig.4	6.7	N	No			
	ш		90250R-18T	•	18	250	142	47.023	110	101.0		40	14	23.4	10	20	119.4	9.1					
		MFWN	90063R-3T-M	•	3	63	47	22	19	11	40	21	6.3	10.4			Fig.1	0.5					
	5		90080R-4T-M	•	4	80	60	27	20	13	50	24	7	12.4	_	_	119.1	1.0		Yes			
	Coarse Pitch		90100R-5T-M	•	5	100	70	32	46			30	8	14.4			Fig.2	1.3					
	rse		90125R-6T-M	•	6	125	87	40	55	66.7	66.7	66.7	66.7		33	9	16.4			119.2	2.5	Yes	
	Coa		90160R-8T-M	•	8	160	102		68					63	32	_		14	20		3.8	4	
			90200R-10T-M	•	10	200	142	60	110	101.6		40) 14	25.7 18	18	26 Fig	Fig.4	6.0		No			
			90250R-12T-M	•	12	250												8.4					
		MFWN	90063R-4T-M	•	4	63	47	22	19	11	40	21	6.3	10.4			Fig.1	0.5					
	_		90080R-5T-M	•	5	80	60	27	20	13	50	24	7	12.4	_	_		1.0		Yes			
ri	Fine Pitch		90100R-7T-M	•	7	100	70	32	46	_		30	8	14.4			Fig.2	1.3					
Metric	Je F		90125R-8T-M	•	8	125	87	40	55			33	9	16.4				2.6	No				
_	표		90160R-10T-M	•	10	160	102		68	66.7	63	32			14	20	<u>.</u>	3.9		l			
			90200R-12T-M	•	12	200	142	60	110	101.6		40	14	25.7	18	26	Fig.4	6.3		No			
		1451401	90250R-14T-M	•	14	250												8.7					
	_	MFWN	90063R-5T-M	•	5	63	47	22	19	11 40 13 50	40	21	6.3	10.4			Fig.1	0.5					
	itch		90080R-7T-M	•	7	80	60	27	20		50	24	7	12.4	_	_		1.1		Yes			
	Extra Fine Pitch		90100R-9T-M	•	9	100	70	32	46			30	8	14.4			Fig.2	1.3					
	Fi		90125R-12T-M	•	12	125	87	40	55		33	9	16.4		20		2.6	No					
	ctra		90160R-14T-M	•	14	160	102		68	66.7	63	32			14	20	F	3.9	4 [,,			
	ш		90200R-16T-M	•	16	200	142	60	110	101.6		40	14	25.7	18	26	Fig.4	6.4		No			
D:			90250R-18T-M	•	18	250												8.8		Std Itam			

Dimension S: 8 mm ●: Std. Item

Spare Parts


		Clamp Screw	Wre TT	ench DTM	Shim	Shim Screw	Wrench	Anti-seize Compound	Arbor Bolt
	Description					0)		W T	
-f	MFWN 90063R-3T-M	SB-50140TR	SB-50140TR TT-15		MFWN-90	SPW-7050	LW-5		HH10×30
Pitch	MFWN 90080R-4T-(M)		11-13			31 00-7030	LVV-3		HH12×35
Coarse	MFWN 90100R-5T-(M)	Recommende Insert Clamp		_		mmended Torque for m Clamp 6.0N·m		MP-1	_
_	MFWN 90063R-4T-M	CD 50140TD	TT 15						HH10×30
itch	MFWN 90080R-5T-(M)	SB-50140TR	TT-15						HH12×35
Fine Pitch	MFWN 90100R-7T-(M)	Recommende Insert Clamp		_	_	_	_	MP-1	_
d)	MFWN 90063R-5T-M	SB-50140TR	TT-15	_					HH10×30
H. Fi	MFWN 90080R-7T-(M)	SB-40140TRN	_	DTM-15					HH12×35
Extra Fine Pitch	MFWN 90100R-9T-(M)		mmended Tore ert Clamp 3.	que for 5N·m	_	_	_	MP-1	_

Coat anti-seize compound (MP-1) thinly on portion of taper and thread prior to installation


Recommended Cutting Conditions → P6

How to Replace the Shim (For Coarse Pitch)

- 1. Be sure to remove dust and chips from the insert mounting pocket
- 2. The shim must be mounted in the proper direction. While aligning the surface of the shim with the mark on it to the corresponding constraint surface (see Fig. 1) and lightly pressing the shim toward the constraint surface of the pocket wall (see Fig. 2), insert the screw into the hole of the shim and tighten (See Fig. 3). When
- tightening screw, make sure that the screw is vertical to the pocket floor (See Fig 3). Recommended torque is 6.0Nm
- 3. After tightening the screw, make sure that there is no clearance between the shim seat surface and the pocket floor. If there is any clearance, remove the shim and mount it again according to the above steps

MFWN90 End Mill (With Coolant Hole)

Toolholder Dimensions

					Dim	ensions ((mm)		Rake Angle (°)		a,	Spare Parts				
			No. of			1							Hole	Clamp Screw	Wrench	Anti-seize Compound
	Description	Stock	inserts	øD	ød	L	l	S	A.R. (MAX.)	R.R.	Coolant					
MFWN	90050R-S32-3T	•	3	50						-12°		SB-50140TR	TT-15			
	90063R-S32-4T	•	4	63	32	110	30	8	+13°	-10°	Yes			MP-1		
	90080R-S32-5T	•	5	80						-9°		Kecommended	Torque 4.2N·m			

Coat anti-seize compound (MP-1) thinly on portion of taper and thread when insert is fixed

: Std. Item

Applicable Inserts

Classification of Hanna	Р	Carbon Steel / Alloy Steel				*				
Classification of Usage	Р	Mold Steel				*				
		Austenitic Stainless Steel			*	☆				
		Martensitic Stainless Steel			☆			*		
★: Roughing / 1st Choice		Precipitation Hardened Stain	less St	teel	*					
☆: Roughing / 2nd Choice	1/	Gray Cast Iron				*				
: Finishing / 1st Choice	K	Nodular Cast Iron					*			
☐ : Finishing / 2nd Choice	N	Non-ferrous Metals							*	☆
(In Case Hardness is Under 45HRC)	_	Heat-Resistant Alloys Titanium Alloys			☆			*		
	S				*					
	Н	Hard Materials								
Insert		Description		nsions ım)	٨	MEGACOAT NAN	0	CVD Coated Carbide	DLC Coated Carbide	Carbide
5612			rε	Z	PR1535	PR1525	PR1510	CA6535	PDL025	GW25
General Purpose		WNMU 080604EN-GM 080608EN-GM	0.4	1.7	•	•	•	•		
Low Cutting Force		WNMU 080608EN-SM	0.8	1.3	•	•	•	•		
Tough Edge (Heavy Milling)	062	WNMU 080608EN-GH	0.8	1.3	•	•	•	•		
Surface-Finish Oriented (High Precision)		WNEU 080608EN-GL	0.8	1.5	•	•	•	•		
Aluminum / Non-ferrous Metals (3-edge)	06.2	WNGT 080608FN-AM	0.8	1.5					•	• Std Item

: Std. Item

How to Mount the Insert

- 1. Be sure to remove dust and chips from the insert mounting pocket
- 2. After applying anti-seize compound on portion of taper and thread, attach the screw to the front end of the wrench. While lightly pressing the insert against the constraint surfaces, put the screw into the hole of the insert and tighten (See Fig. 1)
- 3. When tightening the screw, make sure that the wrench is parallel to the screw. Remember that the screw hole of the holder for Extra Fine pitch is angled to the pocket floor (See Fig. 2 and Fig. 3)
- 4. Be careful not to tighten the screw with excessive torque Recommended torque is 4.2N-m for M5 screw (SB-50140TR) and 3.5N-m for M4 screw (SB-40140TRN)
- 5. After tightening the screw, make sure that there is no clearance between the insert seat surface and the pocket floor of the holder or between the insert side surfaces and the constraint surface of the holder. If there is any clearance, remove the insert and mount it again according to the above steps
- **6.** To index the cutting edge of the insert, turn the insert counterclockwise. (See Fig. 4) The insert corner identification number is stamped on the top surface of the insert

Fig.:

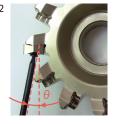
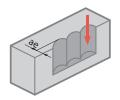


Fig.3

Fig.

er				R	ecommended Inse	rt Grade (Vc: m/mii	n)	
Chipbreaker	Workpiece	fz (mm/t)		MEGACOAT NANO		CVD Coated Carbide	DLC Coated Carbide	Carbide
ਤ			PR1535	PR1525	PR1510	CA6535	PDL025	GW25
	Carbon Steel	0.1- 0.2 -0.3	☆ 120- 180 -250	★ 120- 180 -250	_	_	_	_
	Alloy Steel	0.1- 0.2 -0.3	☆ 100- 160 -220	★ 100- 160 -220	_	_	_	_
	Mold Steel	0.1-0.15-0.25	☆80- 140 -180	★ 80- 140 -180	_	_	_	_
	Austenitic Stainless Steel	0.1-0.15-0.25	☆ 100- 160 -200	☆ 100- 160 -200	_	_	_	_
GM	Martensitic Stainless Steel	0.1-0.15-0.25	☆ 150- 200 -250	_	_	☆ 180 - 240 - 300	_	_
	Precipitation Hardened Stainless Steel	0.1-0.15-0.25	★90- 120 -150	_	_	_	_	_
	Gray Cast Iron	0.1- 0.2 -0.3	_	_	★ 120- 180 -250	_	_	_
	Nodular Cast Iron	0.1-0.15-0.25	_	_	★ 100- 150 -200	_	_	_
	Ni-base Heat-Resistant Alloys	0.1-0.12-0.2	☆ 20- 30 -50	_	_	★ 20- 30 -50	_	_
	Carbon Steel	0.06-0.12-0.2	☆ 120- 180 -250	☆ 120- 180 -250	_	_	_	_
	Alloy Steel	0.06-0.12-0.2	☆ 100- 160 -220	☆ 100- 160 -220	_	_	_	_
	Mold Steel	0.06-0.08-0.15	☆80- 140 -180	☆80- 140 -180	_	_	_	_
	Austenitic Stainless Steel	0.06-0.12-0.2	★ 100- 160 -200	☆ 100- 160 -200	_	_	_	_
SM	Martensitic Stainless Steel	0.06-0.12-0.2	☆ 150- 200 -250	_	_	★ 180 - 240 - 300	_	_
*(GL)	Precipitation Hardened Stainless Steel	0.06-0.12-0.2	☆90- 120 -150	_	_	_	_	_
	Gray Cast Iron	0.06-0.12-0.2	_	_	☆ 120- 180 -250	_	_	_
	Nodular Cast Iron	0.06-0.08-0.15	_	_	☆ 100- 150 -200	_	_	_
	Ni-base Heat-Resistant Alloys	0.06 – 0.1 – 0.15	☆ 20- 30 -50	_	_	☆ 20- 30 -50	_	_
	Titanium Alloys	0.06-0.08-0.15	★ 40- 60 -80	_	_	_	_	_
	Carbon Steel	0.2-0.3-0.4	☆ 120- 180 -250	☆ 120- 180 -250	_	_	_	_
	Alloy Steel	0.2-0.3-0.4	☆ 100- 160 -220	☆ 100- 160 -220	_	_	_	_
	Mold Steel	0.15 – 0.2 – 0.3	☆80- 140 -180	☆80- 140 -180	_	_	_	_
	Austenitic Stainless Steel	0.2-0.25-0.3	☆ 100- 160 -200	☆ 100- 160 -200	_	_		
GH	Martensitic Stainless Steel	0.2-0.25-0.3	☆ 150- 200 -250	_	_	☆ 180 - 240 - 300		
	Precipitation Hardened Stainless Steel	0.2-0.25-0.3	☆90- 120 -150		_	_		
	Gray Cast Iron	0.2-0.3-0.4	_	_	☆ 120- 180 -250	_	_	
	Nodular Cast Iron	0.15 – 0.2 – 0.3	_	_	☆ 100- 150 -200	_	_	_
	Ni-base Heat-Resistant Alloys	0.15 – 0.2 – 0.25	☆ 20- 30 -50	_	_	☆ 20- 30 -50		
AM	Aluminum Alloys	0.1- 0.2 -0.3	_	_	_	_	★ 200- 600 -900	☆ 200 – 500 – 800

The figures in bold font represent the center value of the recommended cutting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation


Machining with coolant is recommended for Ni-base Heat-resistant alloy and Titanium Alloy *GL chiphreaker is recommended for surface finish oriented milling When using GH chipbreaker for fine pitch cutters, recommended feed is $fz \le 0.3 (mm/t)$ GH chipbreaker is not recommended for extra fine pitch cutter

Applicable Chipbreaker

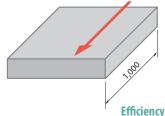
Cutter	GM	SM (GL)	GH	AM
Coarse Pitch (with shim)	0	0	0	0
Fine Pitch (without shim)	0	0	\triangle (fz \leq 0.3mm/t is Recommended)	0
Extra Fine Pitch (without shim)	0	0	Not Recommended	Not Recommended

Cutter Type and Insert Selection Guide

Durnaca		Cutter		Chipbreaker					
Purpose	Coarse Pitch	Fine Pitch	Extra Fine Pitch	GM	SM	GH	GL	AM	
General Milling for Steel and Alloy Steel		•		•					
Steel and Alloy Steel (to prevent chattering due to low rigidity machine or poor clamping power)	•				•				
Productivity Oriented (ap = 4 mm and over $fz = 0.25$ mm and over)	•					•			
Surface Roughness Oriented	•	•					•		
General Milling for Stainless Steel		•			•				
Stainless Steel (to prevent chattering due to low rigidity machine or poor clamping power)	•				•				
Cast Iron Milling (Improved Efficiency)			•	•					
Cast Iton (ap \geq 4 mm fz \geq 0.25 mm/t)	•					•			
General Milling for Aluminum Alloys		•						•	
Aluminum Alloys (to prevent chattering due to low rigidity)	•							•	

MFWN is applicable to plunge milling

Cutting Dia.	Maximum Width of Cut (ae)
All Items	8.0 mm


NOT available for ramping and helical milling, due to interference between workpiece and insert

Case Studies Machine Part FC300 Vc = 170 m/min ap \times ae = 2.5 \times 130 mm fz = 0.18 mm/t (Vf = 500 mm/min) MFWN90160R-8T(8 Inserts) WNMU080608EN-GM(PR1510) **Efficiency Chip Removal Rate** 163 cc/min PR1510 Competitor H **68** cc/min Competitor H continued to cut under low cutting conditions as the workpiece was slipping due to unstable chucking. With MFWN, stable cutting was possible at higher feed rates. (User Evaluation) **Construction Equipment Part** (Manganese Steel) 300 Vc = 150 m/min $ap \times ae = 1 \times 100 \text{ mm}$ fz = 0.2 mm/t300 (Vf = 668 mm/min) MFWN90100R-7T(7 Inserts) WNMU080608EN-GM(PR1525) Machining Efficiency **Tool Life** PR1525 f 2 pcs/edge Competitor K 1 pcs/edge Despite instability with the long overhang, MFWN doubled

tool life, improving the efficiency by 150%.

Frame FC250

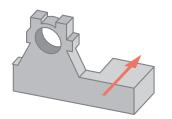
$$\label{eq:continuous} \begin{split} Vc &= 150 \text{ m/min} \\ ap \times ae &= 4 \times 160 \text{ mm} \\ fz &= 0.24 \text{ mm/t} \\ (Vf = 715 \text{ mm/min}) \\ Dry \\ MFWN90160R-10T(10 \text{ Inserts}) \\ WNMU080608EN-GM(PR1510) \end{split}$$

Chip Removal Rate

PR1510 458 cc/min

1.6 Times

Competitor J (Negative Cutter / Vertical Inserts)


282 cc/min

While Competitor J could not improve the cutting conditions due to chattering, MFWN improved it by 160% with NO chattering.

(User Evaluation)

Vc = 260 m/min ap × ae = 1.5 × 80 mm fz = 0.16 mm/t (Vf = 1,000 mm/min) Dry MFWN90080R-7T(7 Inserts) WNMU080608EN-GM(PR1525)

Machining Efficiency

PR1525 3 pcs/edge

Competitor L (Positive Cutter)

(User Evaluation)

1 pcs/edge

MFWN tripled tool life under the same cutting conditions as Competitor L.

(User Evaluation)