
THE NEW VALUE FRONTIER

Micro Diameter High Feed Mills | MFH Micro

Micro Dia. Cutter for High Feed Machining

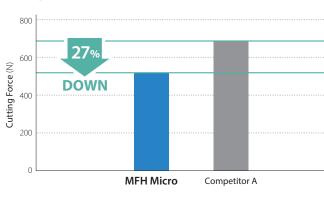
MFH Micro

Low Resistance and Durable Against Chatter for Highly Efficient Machining

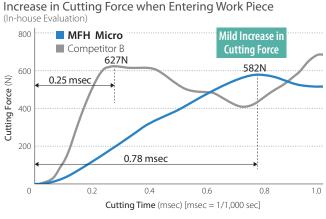
Shortens Rough Machining Times Replaces Solid End Mills to Reduce Machining Costs Supports Small Machining Centers Such as BT30

Micro Diameter / High Feed Mills

Low Resistance and Durable Against Chatter for Highly Efficient Machining Maximum ap 0.5 mm. Stable High Feed Machining on a Wide Range of Applications

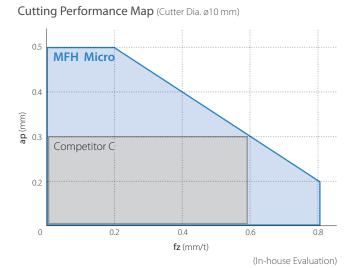

Molded Convex Cutting Edge

3


High Precision G Class Insert

Molded Convex Cutting Edge Controls Initial Impact when Entering the Workpiece

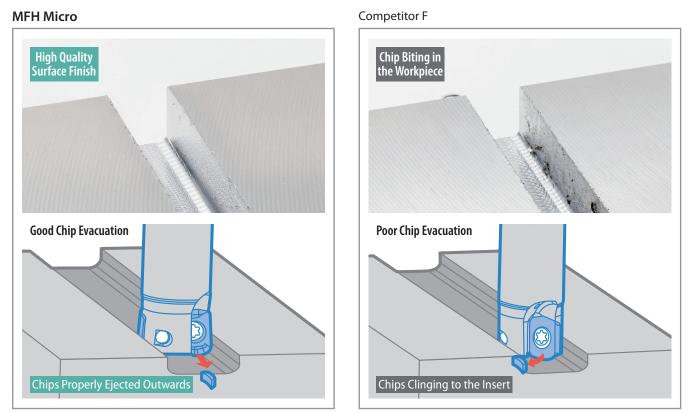
Stable Machining with Chattering Resistance


Cutting Force Comparison (In-house evaluation)

Cutting Conditions: Vc = 120 m/min, fz = 0.6 mm/t, ap = 0.4 mm Cutter Dia. Ø10 mm, Slotting, Dry Workpiece: S50C Cutting Conditions: Vc = 120 m/min, fz = 0.6 mm/t, ap \times ae = 0.4 \times 5 mm Cutter Dia. ø10mm, Dry Workpiece: S50C

Wide Range of Machining Applications

Wide Range of Machining Applications at a Maximum Depth of Cut of 0.5 mm Stable Machining Even with Small Machining Centers



Supports BT30/BT40

3 Good Chip Evacuation

Controls Chip Biting with Convex Cutting Edge

 $Cutting Conditions: Cutter Dia. Dc = \emptyset 10 mm, Vc = 120 m/min, fz = 0.6 mm/t, ap = 0.4 mm (25 Passes) Total 10 mm, Dry Workpiece: SS400 mm/t, ap = 0.4 mm (25 Passes) Total 10 mm (25 Passes)$

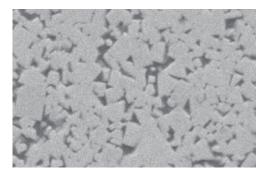
(In-house Evaluation)

4 Replaces Solid End Mills to Reduce Machining Costs

Suppresses Chattering and Increases Milling Efficiency

MFH Micro Compared to Solid End Mills

MEGACOAT NANO PR1535


MEGACOAT NANO Grade PR1535 for stable machining of difficult-to-cut materials such as heat-resistant alloy, titanium, and precipitation hardened stainless steel

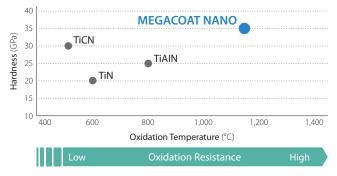
Toughening by a New Cobalt Mixing Ratio

An increase in cobalt content yields a substrate with greater toughness. Fracture toughness values are improved by 23% over previous grades.

High Toughness Carbide Base Material

23% Fracture Toughness

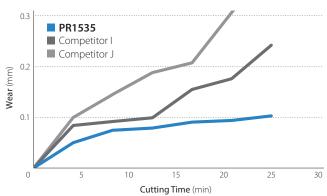
UP



Stability Improvement

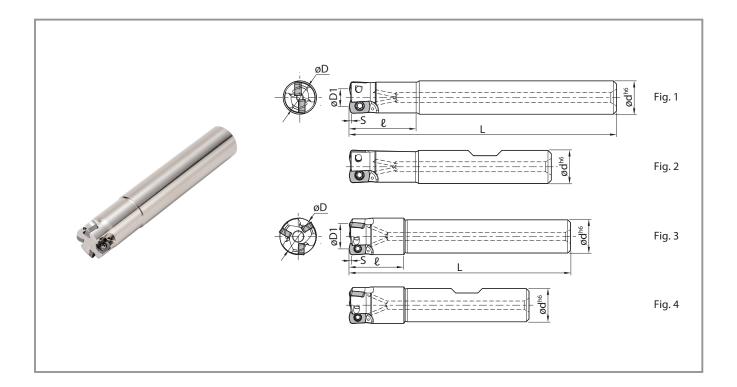
The coarse grain structure and uniform particle size correspond to improved heat resistance, with conductivity values decreased by 11%. The uniform structure also reduces crack propagation.

Coating Properties (Abrasion Resistance)


Achieve long tool life with the combination of a tough substrate and a special Nano coating layer

Coating Properties (Deposition Resistance)


Stable Machining with Excellent Wear Resistance


Abrasion Resistance Comparison (in-house Evaluation)

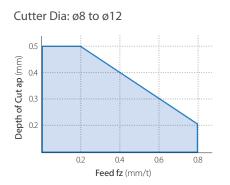
 $\begin{array}{l} \mbox{Cutting Conditions: } Vc = 180\mbox{ m/min, } fz = 0.5\mbox{ mm/t, } ap \ x \ ae = 0.3 \times 8\mbox{ mm} \\ \mbox{Cutting Dia. } \emptyset 10, Dry \qquad Workpiece: SUS304 \end{array}$

Defect Resistance Comparison (in-house Evaluation)

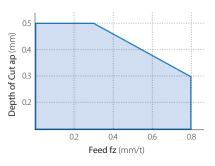
Toolholder Dimensions

Shank	Description	Stock	No. of		[)imensio	ons (mm)		Maximum Pamping A P		A.R. Coolant Shape Weight					n Clamp Screw
Slidlik	Description	SLOCK	Inserts	øD	øD1	ød	L	ł	S	Ramping Angle	А.К.	Hole	зпаре	(kg)	(min ⁻¹)	Clamp Screw	
	MFH08-S10-01-1T	٠	1	8	4.2	10	75	16	0.5	4°				0.04	20,000		
Standard	MFH10-S10-01-2T	٠	2	10	6.2	10	80	20		3°	5°	Yes	Fig. 1	0.04	16,200		
Stanuaru	MFH12-S12-01-3T	•	3	12	8.2	12	80	20	0.5	2°	5	res		0.06	14,000		
	MFH16-S16-01-4T	•	4	16	12.2	16	90	25		1.2°				0.12	11,400		
Long Shank	MFH14-S12-01-3T	•	3	14	10.2	12	80	20	0.5	1.5°	5°	Yes	Fig. 3	0.07	12,500		
	MFH08-W10-01-1T	•	1	8	4.2	10	58	16		4°		Yes	Fig. 2	0.03	20,000	SB-1840TRP	
Standard	MFH10-W10-01-2T	•	2	10	6.2	10	60	20	0.5	3°	5°			0.03	16,200		
(Weldon)	MFH12-W12-01-3T	•	3	12	8.2	12	65	20	0.5	2°	5			0.05	14,000		
	MFH16-W16-01-4T	•	4	16	12.2	16	73	25		1.2°				0.1	11,400		
Over Size (Weldon)	MFH14-W12-01-3T	•	3	14	10.2	12	65	20	0.5	1.5°	5°	Yes	Fig. 4	0.05	12,500		

• : Standard Stock


Spare Parts

	Clamp Screw	Wrench	Anti-seize Compound		
Description		ß		Applicable Inserts	
MFH01	SB-1840TRP	FTP-6	MP-1	LPGT010210ER-GM	


Applicable Inserts

	Shape		Dimensions (mm)					MEGACOAT NANO		CVD Coating
		Description	A	Т	ø d	W	٢٤	PR1525	PR1535	CA6535
General Purpose		LPGT 010210ER-GM	4.19	2.19	2.1	6.26	1.0	•	•	•
									•:	Standard Stock

Cutting Performance

Cutter Dia: ø14 to ø16

Recommended Cutting Conditions ★ 1st Recommended ☆ 2nd Recommended

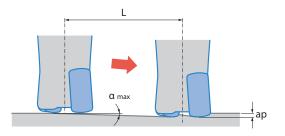
		Holder D	escription and Recommende	l Recommend	ed Feed Rate (eference Value	fz: mm/t)	Recommended Ins	ert Grade and Cutting	Speed (Vc: m/min)
Chipbreaker	Workpiece	MFH08	MFH10	MFH12	MFH14	MFH16	MEGACOAT NANO		CVD Coating
		-1T	-2T	-3T	-3T	-4T	PR1525	PR1535	CA6535
	Carbon Steel (SxxC)	0.2 - 0.4 - 0.6				5 0 9	★ 120 - 180 - 250	☆ 120 – 180 – 250	—
	Alloy Steel (SCM, etc.)			0.2 – 0.5 – 0.8		★ 100 - 160 - 220	⊷ 100 – 160 – 220	_	
	Mold Steel (SKD, etc.) (~40HRC)		0.2 - 0.3 - 0.5 0.2 - 0.4 - 0.6		★ 80 - 140 - 180	☆ 80 – 140 – 180	_		
	Mold Steel (SKD/NAK, etc.) (40 ~ 50HRC)	0.2 – 0.25 – 0.3			0.2 – 0 .	25 – 0.4	★ 60 - 100 - 130	☆ 60 – 100 – 130	—
	Austenitic Stainless Steel (SUS304, etc.)	0.2 – 0.3 – 0.5			0.2 – 0.4 – 0.6		⊷ 100 – 160 – 200	★ 100 - 160 - 200	—
GM	Martensitic Stainless Steel (SUS403, etc.)						_	⊷ 150 – 200 – 250	★ 180 - 240 - 300
	Precipitation Hardened Stainless Steel (SUS630, etc.)							★ 90 – 120 – 150	_
	Gray Cast Iron (FC)		0.2 – 0.4 – 0.6		0.2 – 0.5 – 0.8		★ 120 - 180 - 250	_	—
	Nodular Cast Iron (FCD)	0.2 – 0.3 – 0.5			0.2 – 0.4 – 0.6		★ 100 - 150 - 200		_
	Ni-based Heat-resistant Alloy (Inconel®718, etc.)	- 0.2 - 0.25 - 0.3			0.2 - 0.25 - 0.4		_	☆ 20 – 30 – 50	★ 20 - 30 - 50
	Titanium Alloy (Ti-6Al-4V)						_	★ 40 - 60 - 80	_

Machining with coolant is recommended for Ni-base heat-resistant alloy and titanium alloy. The numbers in bold are the recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation. Internal coolant is recommended for slotting applications.

Approximate Programming Radius Adjustment

Drawing	Approx. R (mm)	Maximum Wall Angle (mm)	Maximum Non-Machined Portion (mm)
l	R1.0	0	0.21
Machining Portion Machining Por	R1.2 (Recommended)	0	0.17
Machining Portion 3870, And Andrew An	R1.5	0.08	0.1
Radius Portuon	R2.0	0.28	0.01

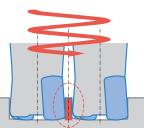
Ramping Reference Data


Description	Cutter Dia. øD (mm)	8	10	12	14	16
Maximum Ramping Angle ar		4.0°	3.0°	2.0°	1.5°	1.2°
MFH01	tan α _{max}	0.070	0.052	0.035	0.026	0.021

Decrease Ramping Angle if Chips Become Excessively Long

Ramping

Ramping angle should be under α $_{max}$ (maximum ramping angle) in the above conditions Reduce recommended feed rate in cutting conditions above by 70%



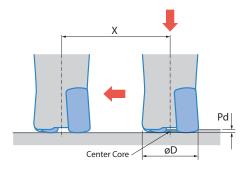
Helical Milling

For helical milling, use between Min. drilling dia. and Max. drilling dia.

× Exceeding Max. Machining Dia. Center Core Remains

Center Core Remains

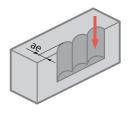
X Under Min. Machining Dia. Center Core Hits Holder Body


Holder	Min. Drilling Dia. øDh1	Max. Drilling Dia. øDh2
MFH01	2×D-3.5	2×D-2

Keep machine depth per rotation less than Max. ap (0.5 mm) Use climb milling (See figure on right)

Feed rates should be reduced to 50% of recommended cutting condition Use caution to eliminate incidences caused by producing long chips

Unit: mm


Drilling

	GM					
Holder	Max. Drilling Depth (Pd)	Min. Cutting Length X for Flat Bottom Surface				
MFH01	0.5	øD – 3.5				
	-	Unit: mm				

When traversing after drilling, it is recommended to reduce the feed by 25% of recommended cutting conditions When drilling, axial feed rate recommendation per revolution is f = 0.2 mm/rev

Plunging

Plunging

Insert Description	Maximum Width of Cut (ae)
LPGT01 Type	1.7 mm

When plunging, reduce feed rate to fz = 0.2 mm/tor less

MFH Series

Small Dia. Cutter for High Feed Machining

Economical Inserts with 4 Cutting Edges High Efficiency with Small Dia. And Fine Pitch High Feed Machining

High Feed Machining

Large Lineup for High Feed Machining, Large ap and Low Cutting Force

