THE NEW VALUE FRONTIER

For Small Parts Machining and Large Depths of Cut

LD Chipbreaker

For Small Parts Machining and Large Depths of Cut

LD Chipbreaker

Max Depth of Cut: 12 mm / Achieves High-Precision Machining in a Single Pass

Low-resistance chipbreaker for smooth machining Stable chip control in a wide range of machining applications

For small parts machining and large depths of cut **LD Chipbreaker**

Max Depth of Cut: 12 mm / Achieves High-Precision Machining in a Single Pass Low-resistance cutting edge suppresses chattering / Stable chip control in a wide range of machining applications

Great for large depths of cut with single pass machining

Availale for greater depths of cut than many conventional chipbreakers Achieves high-precision machining in a single pass

LD Chipbreaker Application Map

Chattering Resistance Comparison (In-house Evaluation)

D Type: Max Depth of Cut 12 mm LD Chipbreaker

Cutting Conditions: Vc = 80 m/min, ap = 12 mm, f = 0.03 mm/rev, Wet (Oil-based) DNMG150404 Type/Workpiece: SKD61 (a25)

T Type: Max Depth of Cut 8 mm

Competitor A

Cutting Conditions: Vc = 80 m/min, ap = 8 mm, f = 0.05 mm/rev, Wet (Oil-based) TNMG160404 Type/Workpiece: SKD61 (025)

Single-Pass Machining Advantages

- Example 1: Conventional tooling requires larger metal removal volume to be machined in multiple passes
 - → Single-pass machining prevents chip problems and maintains stabilty
- Example 2: Long workpieces that can not be machined in multiple passes
 - → Single-pass machining suppresses chattering with high precision & high efficiency

Low-resistance Cutting Edge

2

3

Large rake angle and slanted cutting edge for low-resistance and smooth machining

Cutting Conditions: Vc = 80 m/min, ap = 3 mm, f = 0.07 mm/rev, TNMG160404 Type Workpiece: SCM415

Superior Chip Control in a Wide Range of Machining Applications

Chipbreaker shape optimized for various depths of cut Stable chip control in a wide range of machining applications

Chip Control Comparison (In-house Evaluation)

T Type (Workpiece Diameter: ø25)

Cutting Conditions: Vc = 80 m/min, f = 0.05 mm/rev, Wet (Oil-based), TNMG160404 Type

SKD61 LD Chipbreaker Competitor A 2.5 4.0 8.0

8.0

Cutting Conditions: Vc = 80 m/min, f = 0.05 mm/rev, Wet (Oil-based), TNMG160404 Type

ap (mm)

Cutting Conditions: Vc = 60 m/min, f = 0.03 mm/rev, Wet (Oil-based), TNMG160404 Type

Cutting Force Comparison (In-house Evaluation)

Din SKD61 aguivalant	Chin Control				
Pin: SKD61-equivalent	Chip Control				
	LD Chipbreaker Competitor B				
	Brown and Ming				
Vc = 45 m/min (n = 1,800 min ⁻¹) ap = 1.5 - 1.6 mm, f = 0.03 mm/rev Wet (Oil-based)	LD Chipbreaker shows more stable chip control than Competitor B				

Standard Stock Item Part Numbers (Negative Inserts)

Shape	Description	Dimensions (mm)				MEGACOAT NANO	
		I.C.	Thickness	Hole Diameter	Corner R (rε)	PR1425	PR1535
	DNMG150402R-LD	12.70	- 4.76	5.16	0.2	R	R
	DNMG150404R-LD				0.4	R	R
	TNMG160402R-LD	9.525		3.81	0.2	R	R
	TNMG160404R-LD	9.323			0.4	R	R

R: R-hand only in stock

Recommended Cutting Conditions

LD Chipbreaker Application Map

Recommended Cutting Conditions \bigstar : 1st Recommendation; \precsim : 2nd Recommendation

Workpiece		Recommende	Notes	
		MEGACO		
		PR1425	PR1535	
Carbon Steel, Alloy Steel (SxxC, SCM, etc.)	Vc (m/min)	*	${\leftrightarrow}$	
		60 - 200	60 - 160	
	f (mm/rev)	0.02 - 0.08	0.02 - 0.08	Wet
Stainless Steel (SUS304, etc.)	Vc (m/min)	☆ 60 – 160	★ 60 – 140	Wet
	f (mm/rev)	0.02 - 0.07	0.02 - 0.07	

Adjust cutting conditions according to machine/workpiece rigidity