

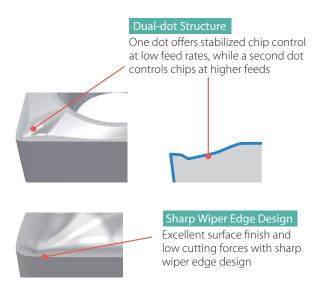
Positive Wiper Insert

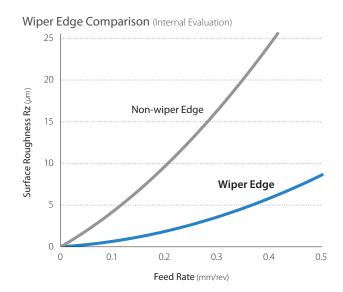
WP Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry

Excellent surface roughness and smooth chip control during high feed machining
High quality surface finish with no galling
High machining accuracy with low cutting forces

Insert Grade and Corner Radius Lineup Expansion
Fewer Programming Corrections with New Handed Insert Designs





WP Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry
Handed / Non-Handed Insert Designs Available Depending on Application

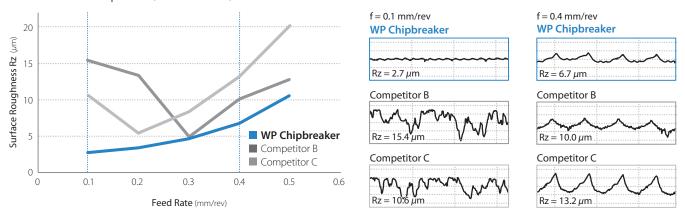
1 Excellent Surface Roughness During High Feed Machining

Cutting Conditions: Vc = 200 m/min, ap = 0.3 mm Toolholder: A20R-SCLCR09-22AE Insert: CCMT09T304 Type

Stable Chip Control in a Wide Range of Feed Rates

Smooth chip control from low feed to high feed rate

Chip Control Comparison (Internal Evaluation)

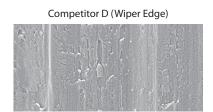


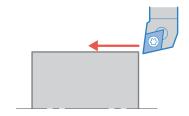
 $Cutting\ Conditions: Vc = 200\ m/min, ap = 0.3\ mm, Wet \\ Toolholder: A20R-SCLCR09-22AE \\ Insert: CCMT09T304\ Type \\ Workpiece: SCM415 \\ Workpie$

3 Excellent Surface Finish

WP chipbreaker offers excellent surface roughness across a wide range of cutting conditions

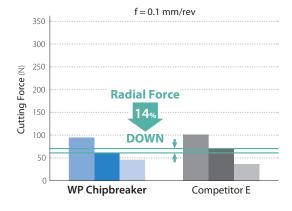
Surface Finish Comparison (Internal Evaluation)

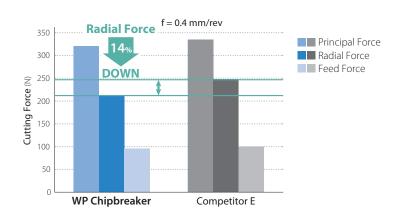

 $Cutting\ Conditions:\ Vc = 150\ m/min,\ ap = 0.5\ mm,\ Wet \quad Toolholder:\ A 20R-SCLCR09-22AE \quad Insert:\ CCMT09T304\ Type \quad Workpiece:\ SCM415$



Reduces Surface Finish Galling

WP chipbreaker reduces tearing of the finished surface by controlling adhesion with the newly designed wiper edge

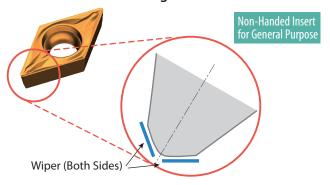

Cutting Conditions: Vc = 80 m/min, ap = 0.73 mm, f = 0.05 mm/rev, Wet Insert: CCMT09T304 Type Workpiece: STKM13A


5

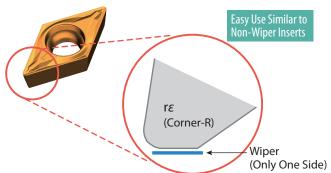
High Machining Accuracy with Low Radial Forces

Prevents tool deflection by reducing radial forces

Cutting Force Comparison (Internal Evaluation)

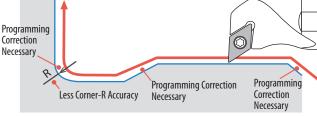


 $Cutting\ Conditions:\ Vc = 200\ m/min,\ ap = 0.3\ mm,\ Wet \quad Toolholder:\ A 20R-SCLCR09-22AE \quad Insert:\ CCMT09T304\ Type \quad Workpiece:\ SCM415-20R-SCLCR09-22AE \quad Toolholder:\ A 20R-SCLCR09-22AE \quad Toolholder:\$



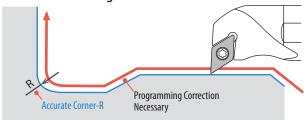
Handed / Non-Handed Insert Designs Available Depending on Application (DCMX⋯/TPMX⋯)

Non-Handed Insert Design



Handed Insert (Drawing Shows Left-hand)

Proper Use of Non-Handed and Handed Inserts

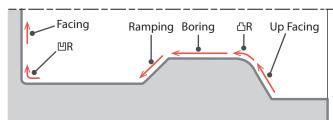


Using Non-Handed Wiper Insert

- · Programming Correction Necessary at 3 Points
- · For Machining with Less Corner-R Accuracy Required

Handed Insert Design

Using Handed Wiper Insert


- · Programming Correction Only **Necessary for Plunging**
- · Accurate Corner-R Available

Similar Use as a Non-Wiper Insert with **Fewer Programming Corrections**

* Cutting-Edge Position is Different with Please Adjust Cutting-Edge Position

Caution (Finished Edge Line)

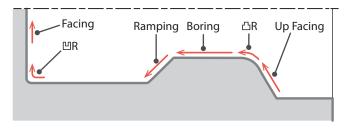
Non-Handed Insert Design

Application	Caution
	For D type and T type inserts, expected performance may vary
Boring/Facing	depending on toolholders
	Please check the applicable toolholder
Up Facing/Ramping	For D type and T type inserts, Z-direction program corrections are required
III D /√ D	Wiper Insert should not be used when an accurate Corner-R is
凹 R/凸 R	required

Radius Cutting [Differences from Non-wiper Insert]

Cut-off and cut-away will occur between radius machining and straight machining

There is a limit to the use of a wiper insert when there is an R parameter symbol


Please refer to the list on the right for finished dimensions

There is no limit for using CCMT type inserts (CCMT type inserts meet ISO standard)

Cut-Off Wiper Insert No Wiper Cut-Away

D Type, T Type	Unit: mm
Nominal Corner R	Finished Dimension
0.2	R0.2 ^{+0.3} _{-0.1}
0.4	R0.4 ⁺ 0.2
0.8	R0.8 ± 0.5

Handed Insert Design

Application	Caution
Boring	For D type and TP type inserts, expected performance may vary depending on toolholders Please check the applicable toolholder
Ramping	For D type and TP type inserts, Z-direction program corrections are required
凹 R/凸 R	Same as Non-Wiper Insert
Up Facing	Same as Non-Wiper Insert
Facing	Same as Non-Wiper Insert

Stock Items

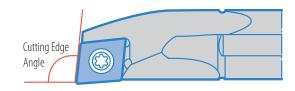
Usage Classification #: Interruption / 1s	t Choice 🕏: Interruption / 2nd Choice	: Contin	uous - Light Ir	nterruption /	1st Choice 🤇): Continuous	- Light I	nterrupt	ion / 2nd (Choice	: Con	tinuous /	1st Choic	ce O:	Continuous / 2r	ıd Choice
			P Carbon steel / Allo		•	•	•	•	•	0	•	•	*	•	©	
				nensions (eı	Cov	mat	MEGA	COAT	CV	ID Coate	ed Carb	ida	MEGACOAT	MEGACOAT
Shape	Description -		וווע	lensions (111111)			met	NANO						NANO	
·	'	I.C.	Thickness	Hole	Corner-R (rε)	Relief Angle	TN610	TN620	PV710	PV720	CA510	CA515	CA525	CA530	PR1425	PR1225
	CCMT 060202WP 060204WP 060208WP	6.35	2.38	2.8	0.2 0.4 0.8	7°	• • •	•	•	• • •	•	•	•	•	•	•
	CCMT 09T302WP 09T304WP 09T308WP	9.525	3.97	4.4	0.2 0.4 0.8	7°	• • •	•	•	• • •	•	•	•	•	•	•
	DCMX 070202WP 070204WP 070208WP	6.35	2.38	2.8	0.2 0.4 0.8	7°	•	•	:	•	:	•	:	:	•	•
	DCMX 11T302WP 11T304WP 11T308WP	9.525	3.97	4.4	0.2 0.4 0.8	7°	•	•	•	•		•	•	•	•	•
NEW	DCMX 070204 R/L-WP	6.35	2.38	2.8	0.4	7°		•		•					•	
Left-hand Shown	DCMX 11T304 R/L-WP	9.525	3.97	4.4	0.4	7°		•		•					•	
	TCMX 090204WP	5.56	2.38	2.5	0.4	7°	•	•	•	•	•	•	•	•	•	•
	TCMX 110204WP	6.35	2.38	2.8	0.4	7°	•	•	•	•	•	•	•	•	•	•
	TPMX 090202WP 090204WP 090208WP	5.56	2.38	2.8	0.2 0.4 0.8	11°	• • •	•	•	• • •	•	•	•	•	•	• • •
	TPMX 110302WP 110304WP 110308WP	6.35	3.18	3.3	0.2 0.4 0.8	11°	•	•	•	• • •	•	•	•	•	•	•
NEW Left-hand Shown	TPMX 110304 R/L-WP	6.35	3.18	3.3	0.4	11°		•		•					•	

Recommended Cutting Conditions

Warkninga	Incort Crado	Min Recommendation - Max.						
Workpiece	iliseri diade	Cutting Speed Vc (m/min)	ap (mm)	Feed f (mm/rev)				
	TN610	80 - 170 - 260) – 260					
	TN620	80 - 150 - 210						
	PV710	90 - 190 - 280						
	PV720	80 - 150 - 210						
Carbon Steel /	CA510	120 - 170 - 220	0.15 – 0.30 – 1.50	0.10 - 0.25 - 0.50				
Alloy Steel	CA515	100 - 160 - 210	0.13 - 0.30 - 1.30	0.10 - 0.23 - 0.30				
	CA525	90 – 140 – 190						
	CA530	80 - 120 - 160						
	PR1425	60 - 120 - 200						
	PR1225	50 - 80 - 150						

: Standard Stock

Recommended Insert Grade


Carbon Steel / Alloy Steel

Application	Applications Target		Target Base Material Coating		Recommended Grade
	Continuous	Surface Quality US Cermet		Non-coated	TN610 / TN620
	Continuous	Wear Resistance	Cermet	MEGACOAT NANO	PV710 / PV720
	Light	Wear Resistance (High Speed)	Carbide	CVD	CA510/CA515/CA525/CA530
	Interrupted	Fracture Resistance (Small Parts)	Carbide	MEGACOAT NANO MEGACOAT	PR1425/PR1225

Corresponding Toolholders / Lead Angles

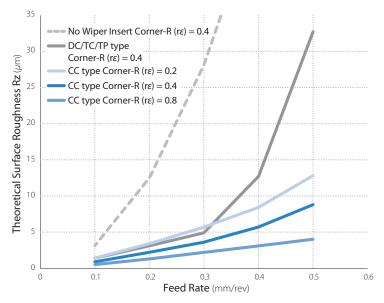
Applicable Cutting Edge Angle

Insert	Cutting Edge Angle
CCMT06/09	95°
DCMX07/11	93°
TCMX09/11	95°
TPMX09/11	95°

Applicable Toolholder

Insert	Application	Description	Applicable	
		A-SCLC-AE		
	Davis s	S-SCLC-A	V	
	Boring	E-SCLC-A	Yes	
CCMT06/09		HA-SCLC09		
CCM106/09		ACLC-FF		
	External	SCLC-FF	Yes	
	Turning	SCLC	res	
		S-SCLC		
		A-SDUC-AE		
			S-SDUC-A	Yes
		E-SDUC-A	*1	
		HA-SDUC11		
DCMX07/11	Poring	A-SDZC-AE		
DCIVIX07/11	Boring	S-SDZC-A	Yes *2	
		E-SDZC-A	_	
		A-SDQC-AE		
		S-SDQC-A	No	
		E-SDQC-A		

Insert	Application	Description	Applicable				
		ADJC-FF					
		SDJC-FF	Yes *2				
		SDJC	_				
		S-SDUC	Yes *1				
DCMX07/11	External Turning					SDLC-FF	See Caution *2
		S-SDLC	See Caution *1				
		SDXC					
		SDNC-F	No				
		SDNC					
	Davina	A-STLC-AE	Yes				
TCMX09/11	Boring	S-STLC-A	res				
	External Turning	STGC	No				
		A-STLP-AE					
		S-STLP-A	Yes *1				
	Davina	E-STLP-A					
TPMX09/11	Boring	S-STWP-E					
		S-STWP	No				
		C-STXP	1				
	External Turning	STGP	No				


 $^{*1\}cdots Left-hand\ Insert\ for\ Right-hand\ Toolholder,\ Right-hand\ Insert\ for\ Left-hand\ Toolholder$

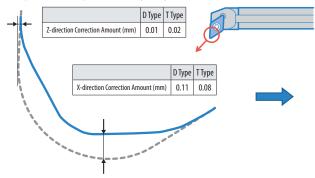
Caution: The SDLC-FF and S-SDLC toolholders have a 5° lead angle

While the DCMX...WP can offer surface finish improvements over non-wiper inserts in those toolholders, optimum performance will be obtained by using a 3° lead angle, such as ADJC-FF, SDJC, S-SDUC, etc.

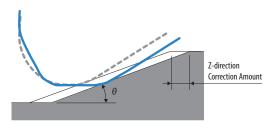
Setting Conditions for Wiper Inserts

Theoretical Surface Roughness

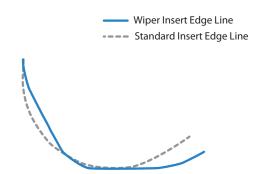
The theoretical surface roughness of a wiper insert is lower than inserts without a wiper

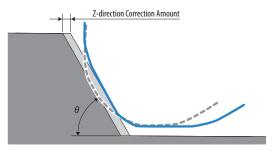

When selecting a feed rate, see left chart for theoretical surface roughness

^{*2···}Right-hand Insert for Right-hand Toolholder, Left-hand Insert for Left-hand Toolholder


WP Chipbreaker Edge Position Offset Adjustment

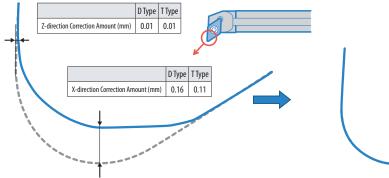
Non-Handed Insert Design

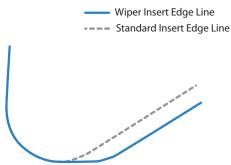

For D type and T type, cutting edge offsets are required



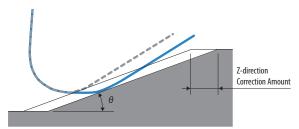
For D type and T type, program corrections are required for ramping and profiling

Ramping Angle θ	0°	5°	10°	15°	20°	25°
Z-direction Correction Amount (mm) D Type	0	-0.14	-0.15	-0.16	-0.16	-0.17
Z-direction Correction Amount (mm) T Type	0	-0.16	-0.17	-0.17	-0.17	_

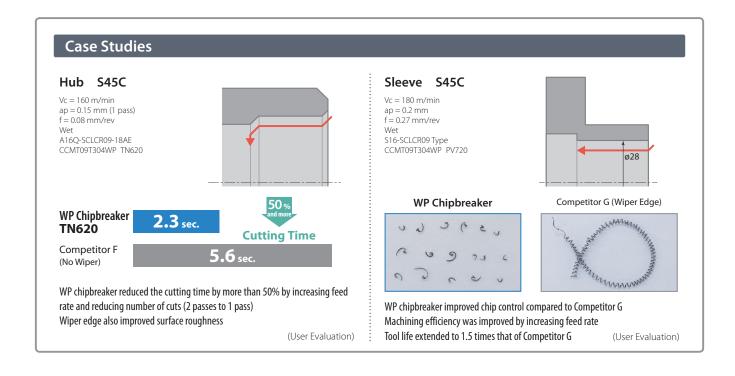




Profiling Angle $ heta$	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°
Z-direction Correction Amount (mm) D Type	0.00	0.07	0.06	0.04	0.03	0.02	0.01	0.00	_	_	_
Z-direction Correction Amount (mm) T Type	0.00	0.07	0.06	0.05	0.05	0.04	0.03	0.02	0.01	0.01	0.00
Profiling Angle θ	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
Z-direction Correction Amount (mm) D Type	-0.01	-0.02	-0.03	-0.04	-0.05	-0.05	-0.04	-0.03	-0.02	-0.01	0.00


Handed Insert Design

For D type and T type, cutting edge offsets are required



Programming Correction is Necessary for Plunging with D and T Type Inserts (Not Necessary for Up-Facing)

Ramping Angle θ	0°	5°	10°	15°	20°	25°
Z-direction Correction Amount (mm) D Type	0	-0.22	-0.24	-0.24	-0.25	-0.25
Z-direction Correction Amount (mm) T Type	0	-0.24	-0.24	-0.25	-0.24	_

Negative Wiper Insert

WE/WF Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry

Finishing-Medium

WE Chipbreaker (For High Machining Efficiency)

High productivity by reducing cutting time during higher feed machining

Stable chip control in a wide range of applications

WF Chipbreaker (For Excellent Surface Roughness)

High productivity with smooth chip control in finishing operations

Excellent surface roughness by controlling adhesion

