For Machining Heat-Resistant Alloy

PR005S/PR015S

Providing Stable and Consistent Performance while Machining of Heat-Resistant Alloys

- Improved thermal properties help to reduce sudden fracture and decrease edge wear
- Improved wear resistance with MEGACOAT HARD coating
- New chipbreaker designs improve machining stability

Finishing to Medium Machining SQ Chipbreaker
For Roughing Applications SX Chipbreaker
For Machining Heat-Resistant Alloy

PR005S/PR015S

Improved Thermal Properties Help to Reduce Sudden Fracture and Edge Wear

1. Newly Developed Substrate Helps to Reduce Sudden Fracture and Notch Wear

 - **PR005S**: Hard, Wear-resistant Grade for High-speed Machining
 - **PR015S**: General Purpose Grade with Excellent Wear Resistance and Stability

 ![Pattern Diagram](image)

 - Improved thermal conductivity by optimum distribution of WC coarse grains
 - Resists heat concentration at the cutting edge to promote stable machining

 Fracture Resistance Comparison (Internal Evaluation)

<table>
<thead>
<tr>
<th></th>
<th>PR015S</th>
<th>Competitor A</th>
<th>Competitor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Impacts</td>
<td>80</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Average Value of 4 Corners</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

 Cutting Conditions: Vc = 25 m/min, ap = 1.0 mm, f = 0.10 mm/rev, Wet, CNMG120408 Type
 Workpiece: Nickel-based Superalloy
 Cylindrical Workpiece with 1 Flat Face

2. Improved Wear Resistance with MEGACOAT HARD coating

 Coating Film Property (Internal Evaluation)

 - TiCN
 - TiAIN
 - MEGACOAT HARD
 - TiN

 Wear Resistance Comparison (Internal Evaluation)

 - Excellent wear resistance with high-hardness and resists boundary damage with improved thermal properties

 Cutting Conditions: Vc = 60 m/min, ap = 1.0 mm, f = 0.20 mm/rev, Wet, CNMG120408 Type
 Workpiece: Nickel-based Superalloy

 Machining Time: 3.5 min
 Competitor D could only reach 2.6 minutes.
New Chipbreaker Designs Improve Machining Stability

Finishing to Medium Machining SQ Chipbreaker
Extended Tool Life and Improved Efficiency for Mid-range to Finishing Applications in Heat-Resistant Alloys

SQ Chipbreaker Benefits
- Reduced Temperature at the Cutting Edge
- Extended Tool Life
- Reduces Burring
- Extended Tool Life and Efficiency Improvements

Slant Cutting Edge
Inclined in (-) Direction
Effective for Burr Suppression and Reducing Notching

Special Axial Face Design Decreases Cutting Edge Temperature
Optimal Design Achieved with Simulation Technology

Simulation of Edge-Temperature Comparison
Internal Evaluation

Cutting Conditions: Vc = 40 m/min, f = 0.15 mm/rev, CNMG120408 Type, Dry
Workpiece: Nickel-based Superalloy

The newly developed chipbreaker reduces temperature at the cutting edge, thereby improving tool life and machining efficiency in semi-finishing applications

Applicable Chipbreaker Range
(ap Indicates Radial Depth of Cut per Side)

Cutting Force Comparison (Radial Force)
Internal Evaluation

Cutting Conditions: Vc = 40 m/min, f = 0.15 mm/rev, Wet, CNMG120408 Type
Workpiece: Nickel-based Superalloy

Wear Resistance Comparison
Internal Evaluation

Cutting Conditions: Vc = 40 m/min, ap = 1.0 mm, f = 0.20 mm/rev, Wet, CNMG120408 Type
Workpiece: Nickel-based Superalloy
For Roughing SX Chipbreaker
Improved Efficiency for Roughing Applications in Heat-Resistant Alloys

SX Chipbreaker Benefits
- Decreased Edge Temperature
- Longer Tool Life
- Suppresses Burr Formation
- Greater Depths of Cut
- Decreased Radial Forces
- Resists Edge Build-up and Improves Efficiency

Rake Design Decreases Temperature at the Cutting Edge
Optimal design achieved with CNC simulation technology

Unique Cutting Edge Design (Handed Insert)
- 60 Degree Lead Angle (when installed in the toolholder)
- 12 Degree Rake Angle

Simulation of Edge-Temperature Comparison (Internal Evaluation)

Applicable Chipbreaker Range
(ap indicates Radial Depth of Cut per Side)

Wear Resistance Comparison (Internal Evaluation)

Even in larger depths of cut, the SX chipbreaker is able to suppress burr build-up
Increased D.O.C capability and reduced notch wear combine to provide greater machining efficiency
Recommended Cutting Conditions

<table>
<thead>
<tr>
<th>Workpiece</th>
<th>Cutting Range</th>
<th>Application</th>
<th>Recommended Chipbreaker</th>
<th>Recommended Grade</th>
<th>Min. - Recommendation</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finishing</td>
<td>Continuous</td>
<td>MQ</td>
<td>PR005S</td>
<td>30 – 55 – 90</td>
<td>0.2 – 0.3 – 1.0</td>
<td>0.05 – 0.08 – 0.15</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td></td>
<td>PR015S</td>
<td>25 – 45 – 70</td>
<td>0.2 – 0.5 – 1.0</td>
<td>0.05 – 0.1 – 0.2</td>
</tr>
<tr>
<td>Heat-Resistant Alloys</td>
<td>Continuous</td>
<td>MU</td>
<td>PR005S</td>
<td>30 – 55 – 90</td>
<td>0.5 – 1.0 – 2.0</td>
<td>0.1 – 0.15 – 0.3</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td></td>
<td>PR015S</td>
<td>25 – 45 – 70</td>
<td>0.5 – 1.0 – 2.0</td>
<td>0.1 – 0.15 – 0.3</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>MS</td>
<td>PR005S</td>
<td>30 – 55 – 90</td>
<td>0.5 – 1.0 – 2.0</td>
<td>0.1 – 0.15 – 0.3</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td></td>
<td>PR015S</td>
<td>25 – 45 – 70</td>
<td>0.5 – 1.0 – 2.0</td>
<td>0.1 – 0.15 – 0.3</td>
</tr>
<tr>
<td></td>
<td>Continuous</td>
<td>SQ</td>
<td>PR005S</td>
<td>30 – 55 – 90</td>
<td>0.3 – 0.5 – 1.5</td>
<td>0.1 – 0.17 – 0.35</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td></td>
<td>PR015S</td>
<td>25 – 45 – 70</td>
<td>0.3 – 0.5 – 1.5</td>
<td>0.1 – 0.17 – 0.35</td>
</tr>
<tr>
<td>Roughing</td>
<td>Continuous</td>
<td>SX</td>
<td>PR005S</td>
<td>30 – 55 – 90</td>
<td>0.5 – 2.0 – 4.0</td>
<td>0.15 – 0.3 – 0.45</td>
</tr>
<tr>
<td></td>
<td>Intermittent</td>
<td></td>
<td>PR015S</td>
<td>25 – 45 – 70</td>
<td>0.5 – 2.0 – 4.0</td>
<td>0.15 – 0.3 – 0.45</td>
</tr>
</tbody>
</table>

Caution when Using SX Chipbreaker

1. **Cutting Edge Height**
 - The center of the cutting edge height of the nose is slanted by 60 degrees based on circled portions in image below.

![60 Degree Cutting Edge](image)

2. **Recommended D.O.C.**
 - Recommended depth of cut is no greater than the 60° lead angle; however, larger depths of cut are possible.

<table>
<thead>
<tr>
<th>Description</th>
<th>Recommended D.O.C. External Turning (mm)</th>
<th>Max. D.O.C. Facing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMM1204X PQ-SX</td>
<td>0.5 – 2.0 – 4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>CNMM1606X PQ-SX</td>
<td>0.5 – 2.5 – 4.5</td>
<td>2.0</td>
</tr>
<tr>
<td>CNMM1906X PQ-SX</td>
<td>0.5 – 3.0 – 5.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

3. **Applicable Toolholder**
 - The SX chipbreaker insert requires a different shim than standard inserts.
 - No additional toolholder modifications are necessary when using the applicable Kyocera holders.

<table>
<thead>
<tr>
<th>Insert Description</th>
<th>Applicable Toolholder (Kyocera)</th>
<th>Standard Shim</th>
<th>Shim for SX Chipbreaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMM1204X PQ-SX</td>
<td>DCLN PQ/2020K-12</td>
<td>DC-44</td>
<td>DC-44-C</td>
</tr>
<tr>
<td></td>
<td>DCLN PQ/2525M-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNMM1606X PQ-SX</td>
<td>PCLN PQ/2020K-12</td>
<td>LC-42N</td>
<td>LC-42N-C</td>
</tr>
<tr>
<td></td>
<td>PCLN PQ/2525M-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNMM1906X PQ-SX</td>
<td>PCLN PQ/3232P-19</td>
<td>LC-63</td>
<td>LC-63-C</td>
</tr>
</tbody>
</table>

4. **Unmachined portion varies with insert size**
 - Unmachined portion is reflected below.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount Uncut (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CNMM1204X PQ-SX</td>
<td>4.1</td>
</tr>
<tr>
<td>CNMM1606X PQ-SX</td>
<td>4.8</td>
</tr>
<tr>
<td>CNMM1906X PQ-SX</td>
<td>5.4</td>
</tr>
</tbody>
</table>

5. **Facing**
 - Facing is possible, but turning is recommended.
 - Cutting edge may drop below center in facing operations (Boss remains at the center of the workpiece).

<table>
<thead>
<tr>
<th>Description</th>
<th>Run-out Amount when Facing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMM1204X PQ-SX</td>
<td>0.75</td>
</tr>
<tr>
<td>CNMM1606X PQ-SX</td>
<td>0.85</td>
</tr>
<tr>
<td>CNMM1906X PQ-SX</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Applicable Chipbreaker Range

(ap Indicates Radial Depth of Cut per Side)

Stock Items

<table>
<thead>
<tr>
<th>Shape</th>
<th>Description</th>
<th>Dimensions (mm)</th>
<th>Finishing-Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX</td>
<td>SNMG 120404MQ 120408MQ</td>
<td>12.70 4.76 5.16 0.4 0.8</td>
<td>● ● ●</td>
</tr>
<tr>
<td>SQ</td>
<td>SNMG 120404MQ 120408MQ</td>
<td>12.70 4.76 5.16 0.4 0.8</td>
<td>● ● ●</td>
</tr>
</tbody>
</table>

Stock Items

- **CNMM…XR/L-SX** inserts are single-sided with 2 cutting edges.

The information contained in this brochure is current as of June 2017. Duplication or reproduction of any part of this brochure without approval is prohibited.

© 2017 KYOCERA Corporation