

Insert grades	A6-A21
Cermet	A6
PVD coated cermet	A6
CVD coated carbide (Turning)	A8
PVD coated carbide (Turning)	A10
PVD / CVD coated carbide (Milling / Drilling)	A12
Carbide	A14
DLC coated carbide	A14
Ceramic	A15
CBN (Cubic boron nitride)	A16
PCD (Polycrystalline diamond)	A17
Honeycomb structure CBN	A18
Insert material selection table	A19
Grade properties	A20

A

Kyocera promotes research and development to help improve customers' productivity and profitability. Kyocera provides high-quality inserts in various grades including cermet, coated carbide, coated super micro grain carbide, carbide, ceramic, PCD and CBN.

Turning

	Workpiece material			Steel				Stain	lless steel / Cas	t steel			Cas	t iron	
	Cutting range	Finishing	\leq		>	Roughing	Finishing	\leq		>	Roughing	Finishing	<	>	Roughing
	Classification	P01	P10	P20	P30	P40	M01	M10	M20	M30	M40	K01	K10	K20	K30
	TN series		N610 TN620 TN60 TN					TN610 TN620 TN60 TN90					TN60		
	TC series			TC60M				Сто	260M						
Cermet	CCX (CVD coated)		ССХ										ССХ		
	PV series	(PV9	0			(PV90							
	MEGACOAT												PV7005		
	MEGACOAT NANO		PV710 PV720	PV730				PV710 PV720 PV	730						
	CA series		CA510 CA ()) () ()() ()) ()() ()) ()() ()) ()() ()) ()() ()) ()) ()() ()) (_)) (_)) (_))) (_))) (_))) (_))) (_))) (_))) (_)))(())(()))(()))(()))(()))(())(()))(()))(()))(()))(())(()))(())(()))(()))(())(()))(()))(()))(())(()))(()))(())(()))(())(()))(()))(())(()))(())(()))(()))(())(()))(())(())(()))(())(()))(()		A530	535		CAG	CA652	5			4505	A315 CA320 4515	
Coated carbide	PR series			PR1025					930 PR1025						
	MEGACOAT			PR1225					PR1	225					
	MEGACOAT NANO			Р	R1535				F	PR1535					
	MEGACOAT NANO PLUS		PR1705	PR1725					PR1725						
	Ceramic											KA30 KT60 A661 PT600 KS60 CS7	N M		
	Carbide												KW10		
	CBN											KBN475 KBN6 KBI			

Turning

	Workpiece material		Non-ferro	ous metals				cut materials itanium alloys			Hard m	aterials			Sinter	ed steel	
	Cutting range	Finishing	\leq	\Rightarrow	Roughing	Finishing	\leq	\Longrightarrow	Roughing	Finishing	\leq	\Rightarrow	Roughing	Finishing	\leq		Roughing
	Classification	N01	N10	N20	N30	S01	S10	S20	S30	H01	H10	H20	H30	01	10	20	30
e	CA series						CA65	515 CA65	25								
Coated carbide	MEGACOAT HARD					PRO	05S PRC	0155									
	MEGACOAT NANO							PR1	535								
	Cermet														TN610 TN60		
	Ceramic						К	S6030 KS6040		KT A6 PT6	6N						
	CBN									KBN51 KBN							
	MEGACOAT														KBN KBN	170M 570	
	MEGACOAT TOUGH									КВ	N020						

Workpiece material		Non-ferro	ous metals			Difficult-to-(esistant alloys / Ni-				Hard m	aterials			Sintere	ed steel	
Cutting range	Finishing	\leq		Roughing	Finishing	\leq		Roughing	Finishing	\leq		Roughing	Finishing	\leq		Roughing
Classification	N01	N10	N20	N30	S01	S10	S20	S30	H01	H10	H20	H30	01	10	20	30
MEGACOAT NANO Coated carbide							PR	1535								
Carbide		W05 KW10				SW05 SW KW10) /10 SW2	5								
DLC coated carbide		PDL010 PDL0	025													
PCD		KPD0 KPD KPD23 PD250	010		KPD0	KPD0	01									

Small parts machining

	Workpiece material			Stee	I				Stain	<mark>less steel / Ca</mark>	st steel				Cast iro	n	
	Cutting range	Finishing	$\leq =$				Roughing	Finishing -	\leq			> Roughi	ng Finis	hing <	1		Roughing
	Classification	P01	P10	P20	P	30	P40	M01	M10	M20	M30	M40) К()1	K10	K20	K30
e	PR series		P	R930 PR10	25	\supset		(PR	930 PR1025)					
arbid	MEGACOAT			PR1	225					PR	1225	\rightarrow					
Coated carbide	MEGACOAT NANO			F	PR1535)			P	R1535						
0	MEGACOAT NANO PLUS	Р	PR1705	PR1725						PR1725							
	Workpiece material		Non-ferro	us metals	I	Heat	Difficult-to -resistant alloys / P	-cut material li-base heat-resista			Hard ma	nterials			Sinter	ed steel	
	Cutting range	Finishing	Non-ferrous metals Finishing Roughing			Finishing			Roughing	Finishing			Roughing	Finishing			Roughing
	Classification	N01	N01 N10 N20 N30			S01	S10	S20	S30	H01	H10	H20	H30	01	10	20	30
	Carbide	GW	V05														

A

Grooving / Cut-Off / Threading

Insert grades

	Workpiece material			Steel				Stain	ess steel / Cas	t steel			Cast	iron	
	Cutting range	Finishing	\leq			Roughing	Finishing				Roughing	Finishing	\leq		Roughing
	Classification	P01	P10	P20	P30	P40	M01	M10	M20	M30	M40	K01	K10	K20	K30
	MEGACOAT	P	V7040									P	V7040		
Cermet	TN series		TN620 TN6020 TN60 TN60					TN620 TN6020 TN60 TN60 TN90					TN60		
	TC series	C	TC40N	TC60M				Стс	60M				TC40N		
	CR series			CR9025					CR9025	\square					
Coated carbide	PR series		PR915 PR9	30 PR1025 1115			C	PR915					PR905)	
Coate	MEGACOAT			PR1215 PR1225					PR1215 PR122				PR	1215	
	MEGACOAT NANO			PI PR162	R1535 5				PR1515 P PR1625						
	Ceramic											A65 A66N PT600			
	Carbide												KW10 GW15		

Workpiece material		Non-ferro	us metals			Difficult-to-o Titanium / Tit				Hard m	aterials			Sintere	d steel	
Cutting range	Finishing	\leq		Roughing	Finishing	\leq		Roughing	Finishing	\leq		Roughing	Finishing	\leq		Roughing
Classification	N01	N10	N20	N30	S01	S10	S20	S30	H01	H10	H20	H30	01	10	20	30
MEGACOAT Coated carbide															PR1215 PR1225	
Cermet														TN60		
Ceramic									(A6) (PT6)							
Carbide		KW10 GW05 GW15				KW10 GW15										
DLC coated carbide		PDL)25													
CBN									KBN51 KBN					KBN57	0	
PCD	KPD00				KPD00 KPD010											

Drilling

	Workpiece material			Steel				Stain	less steel / Cas	t steel			Cast	iron	
	Cutting range	Finishing	\leq		>	Roughing	Finishing	\leq			Roughing	Finishing	\leq		Roughing
	Classification	P01	P10	P20	P30	P40	M01	M10	M20	M30	M40	K01	K10	K20	K30
	CA series			CA520[CA	6535			CA415	D	
de	MEGACOAT			PR1225					PR12	25	\triangleright		PR1	210	
carbide	MEGACUAI			PR123	0)							PRI	210	
Coated															
J	MEGACOAT NANO			PR153	35				PR1535	5	$\overline{\mathbf{D}}$				
	Carbide												KW10		
	carbrac												GW15		

Workpiece material		Non-ferro	us metals				cut materials canium alloys			Hard m	aterials	
Cutting range	Finishing <	$\langle \rangle$		> Roughing	Finishing <			> Roughing	Finishing <			> Roughing
Classification	N01	N10	N20	N30	S01	S10	S20	S30	H01	H10	H20	H30
MEGACOAT Coated carbide										PR1230		
Carbide		KW10 GW15				KW10 GW15						

Milling

1	Workpiece material			Steel				Stain	<mark>ess steel / Cas</mark> t	t steel			Cast	iron	
	Cutting range	Finishing -	\leq			Roughing	Finishing	\leq		>	Roughing	Finishing	<	>	Roughing
	Classification	P01	P10	P20	P30	P40	M01	M10	M20	M30	M40	K01	K10	K20	K30
Cermet	TN series		TN60	TN620M				TN60	MOC						
	MEGACOAT NANO	C	PV60N												
	CA series								CA	6535			CA420M		
carbide	MEGACOAT			PR1225 PR1230	, ,				PR122	25			PR12	210	
Coated carbide	MEGACOAT NANO			PR1525					PR15 Pf	25 R1535			PR1	510	
	Carbide												KW10 GW	/25	

	Workpiece material		Non-ferro	ous metals		Heat-re		cut materials -base heat-resistar			Difficult-to- Titanium / Ti	cut materials tanium alloys			Hard m	aterials	
	Cutting range	Finishing	\leq	\Longrightarrow	Roughing	Finishing	\leq	$ \Longrightarrow $	Roughing	Finishing	\leq	\Longrightarrow	Roughing	Finishing	\leq		Roughing
	Classification	N01	N10	N20	N30	S01	S10	S20	S30	S01	S10	S20	\$30	H01	H10	H20	H30
	CA series						CA	5535			CA65	535					
Coated carbide	MEGACOAT										PR12	210					
Coated	MEGACOAT HARD														PRC	0155	
	MEGACOAT NANO							PR1535			PR	1535					
	Carbide		KW10								KW10						
	Carbide		GW2	25							GW	V25					
	DLC coated carbide		PDL02	5													
	CBN																
			KPDC	01							KPD0	01					
	PCD		KPD	010						KPD0 ⁻	10						1
	PCD		KPD23	30													
		K	PD250														

A

Insert grades

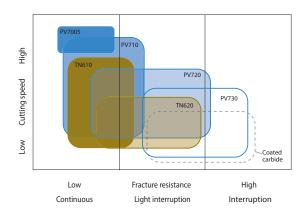
Insert grades

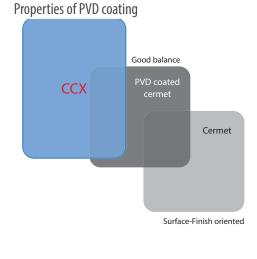
Cermet

Cermet

KYOCERA is known as one of the leading manufacturer of cermets. Cermets combine toughness with superior wear resistance, and provide longer tool life and excellent surface finishes. Typical materials used in cermets are TiC, TiN, TiCN and NbC.

PVD coated cermet (MEGACOAT / MEGACOAT NANO Cermet)


PVD coated cermet is coated on cermet substrate with a thin layer of high wear resistance and high adhesion resistance by PVD (Physical Vapor Deposition) technology. Generally because of the low processing temperature of PVD compared with CVD, PVD coated cermet features less deterioration and more bending strength.

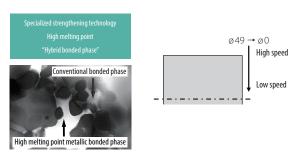


Features of cermet and PVD coated cermet

Classification		Grade	Color	Main component (Coated composition)	Advantages and applications
		TN610		TiCN	High wear resistant cermet due to three types of special reinforcement technology Application: Cermet for steel machining, long tool life in high speed and continuous
		TN620		TiCN	Three types of special reinforcement technology realized the superior fracture resistance and wear resistance Application: Stable machining of steel
		TN60		TiCN+NbC	Application: Machining of steel, continuous to interruption
	Cermet	TN6020	Gray	TiCN	Application : Uncoated cermet for grooving of steel
		TN620M		TiCN	Tough cermet for milling with excellent balance of wear resistance and toughness Application : Millig of steel with high quality surface finish and long tool life
		TN100M		TiCN+NbC	Tough cermet with improved oxidation resistance and thermal shock resistance Application: Milling of steel at high speed
P Steel		TC40N		TiC+TiN	Good balance of wear resistance and toughness Application: Grooving and threading of steel
Siee	CVD Coated Cermet	ССХ	Gold	TiCN (TiCN+Al ₂ O ₃ +Tin)	 Specialized high-strength micro grain cermet base material with superior wear-resistant thick CVD coating Excellent wear resistance leads long tool life in high speed machining Application : High speed finishing to light interrupted machining of steel
	ANO	PV710	Gold	TiCN (MEGACOAT NANO)	Superior wear and adhesion resistant MEGACOAT NANO on the high wear resistant cermet Application: Long tool life and stability in high speed continuous machining of steel, excellent surface
	MEGACOAT NANO Cermet	PV720	9010	TiCN (MEGACOAT NANO)	Superior wear and adhesion resistant MEGACOAT NANO on the special reinforcement cermet Application: First choice PVD coated cermet for steel machining, high efficient machining and high quality surface finish
	MEG	PV60M	Gold	TICN+NbC (MEGACOAT NANO)	 Improved stable grade for milling by MEGACOAT NANO coating technology Application: Milling of steel with high quality surface finish and stable machining
	Cermet	PV7040		TiC+TiN (MEGACOAT)	MEGACOAT Cermet for Grooving Application: Excellent surface finish and longer tool life in steel grooving
K Cast iron	MEGACOAT Ce	PV7005	Blackish Red	TiC+TiN MEGACOAT	 Heat-resistant MEGACOAT on cermet with excellent wear resistance Application: High speed finishing of gray and nodular cast irona

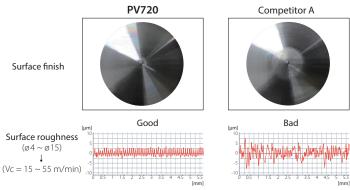
Application map

Uncoated CERMET TN610/TN620


MEGACOAT NANO CERMET

PV710/PV720/PV730

Special reinforcement technology (hybrid technology) Superior surface finish and machining stability.


Excellent surface finish

- Combining the conventional cermet bonded phase (nickel, cobalt) and the special high melting point metallic bonded phase
- Provides high adhesion resistance to eliminate galling of the workpiece

Surface finish comparison (In-house evaluation)

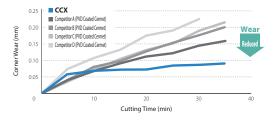
 η Cutting conditions: Vc = 180 ~ 0 m/min (Constant rotational speed), ap = 0.5 mm, f = 0.1 mm/rev, wet, CNMG120404 type, workpiece: S10C

CVD coated cermet for finishing

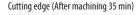
CCX

Excellent high speed finishing leads to greater productivity. Applicable to a wide range of cutting conditions from general to high speed machining. Maintains long tool life in soft steel, general steel and cast iron machining

Superior wear resistance to PVD coated cermets


ссх

Unique cermet base material with thick CVD coating


Alloy Steel - SCM435 High speed comparison: Vc = 400 m/min

CCX provided better tool life than competitor's PVD cermets by greatly reducing the amount of wear

Wear resistance comparison (Internal evaluation)

Cutting conditions: Vc = 400 m/min, ap = 0.3 mm, f = 0.12 mm/rev, Wet, CNMG120408 type, external turning

Competitor A (PVD coated cermet)

Competitor B (PVD coated cermet)

Competitor C (PVD coated cermet)

* Picture shows 30 min after machining due to a large amount of wear

A7

CVD coated carbide (Turning)

A

CVD coated carbide

Using chemical vapor deposition coating technology, CVD coated carbide grades provide stable, efficient machining at high speeds or for heavy interrupted applications.

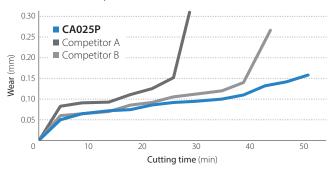
Features

- Applicable from low to high speed machining and from finishing to roughing
 Stable machining is achieved due to the superior toughness and crack resistance
 Cutting times are reduced due to good chip control from effective chipbreakers

Features of CVD coated carbide

Classification	Grade	Color	Coated composition	Advantages and applications
	CA510		TiCN+Al ₂ O ₃ +TiN	 Special substrate with thermal deformation resistance along with a thick and tough coating layer providing high wear resistance Application: High speed and high efficiency steel machining
	CA515		TiCN+Al203+TiN	Improved wear resistance and stability due to special substrate with heat deformation resistance and hard and tough coating layer with reinforced interface Application: Light interrupted machining of steel
	CA025P TiCN+Al ₂ O ₃		TiCN+Al ₂ O ₃ +TiN	CVD coating with improved wear resistance. Adopted base material, excellent chipping resistance, resistance to wear and resistance to improve chip performance Application: Continuous to interrupted processing of steel
Р	CA525		TiCN+Al203+TiN	Stable and long tool life machining due to special substrate with heat deformation resistance and tougher coating layer and reinforced interface Application: Interrupted to general machining of steel
Steel	CA530	Gold	TiCN+AI ₂ O ₃ +TiN	 Special tough substrate and tough coating layer providing high stability and wear resistance Application: General to heavy interrupted machining (stability oriented)
	CA5505]	TiCN+Al ₂ 0 ₃ +TiN	Application: High speed continuous machining of steel, continuous to light interrupted machining of cast iron
	CA5515	TiCN+Al ₂ 0 ₃ +TiN		Application: Machining of steel, continuous to light interruption
	CA5525		TiCN+Al203+TiN	Application: For general machining of steel, roughing to interruption
	CA5535		TiCN+Al203+TiN	Application: Roughing to heavy interrupted machining of steel
	CR9025		TiCN+TiN	 Improved toughness and stability due to specialized carbide substrate with plastic deformation resistance Application: Cut-off, grooving and multi-function machining of steel
м	CA6515		TiCN+Al ₂ 0 ₃ +TiN	- Frecialized carbide substrate for machining stainless steel, excellent wear resistance - Application: Continuous machining of stainless steel
Stainless steel	CA6525		TiCN+Al ₂ 0 ₃ +TiN	Specialized carbide substrate for machining stainless steel, excellent notching resistance and toughness Application: First choice for general machining of stainless steel, from finishing to roughing, continuous to interruption
	CA310		TiCN+Al ₂ 0 ₃ +Ti base	Grade for high-speed continuous machining and improved tool life through the deposition of a thickened Al2O3 coating layer Application : For finishing to roughing of gray cast iron
	CA315	Rose Gold	TiCN+Al ₂ 0 ₃ +Ti base	 Both high abrasion resistance and stability are compatible, high efficiency and long life performance are demonstrated. Can be adapted to both continuous machining and interrupted machining. Application: Compatible with a wide processing area for cast iron and gray cast iron. First recommendation for cast iron
K	CA320		TiCN+Al203+Ti base	Improved stability with CVD layer structure with high adhesion Application : Heavily interrupted or High-speed machining for Nodular Cast Iron. The 1st Recommendation for the FCD500 or higher application
Cast iron	CA4505		TiCN+Al ₂ 0 ₃	 Stable, longer tool life due to improved bonding strength of coating layers and special treatment of the surface of the top coating layer Application: For gray cast iron and nodular cast iron at high speed in continuous to light interrupted machining
	CA4515	Blackish gray	TiCN+Al ₂ 0 ₃	 Stable, longer tool life due to improved bonding strength of coating layers and special treatment of the surface of the top coating layer Application: First choice for gray cast iron and nodular cast iron in light to heavy interrupted machining

CVD coated carbide grade for steel

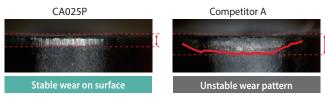

CA025P

Next generation CVD coating for longer tool life

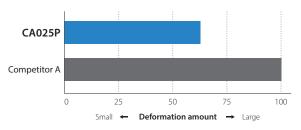
Improved wear resistance with new CVD grade for steel

Thickened alumina with good thermal resistance (Twice as thick as conventional coating) Improved plastic deformation resistance by increased temperature strength

Wear resistance comparison (Internal evaluation)

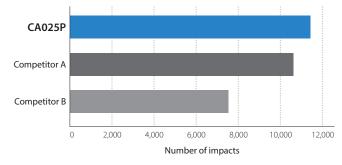


Cutting conditions: Vc = 300 m/min, ap = 1.5 mm, f = 0.3 mm/rev, wet workpiece: SCM435 $\,$


Wear comparison (Internal evaluation) Cutting time: 25.2 min

CA025P maintains smooth and flat wear with stable tool life

Cutting conditions: Vc = 300 m/min, ap = 1.5 mm, f = 0.3 mm/rev, wet workpiece : SCM435


Plastic deformation comparison under high temperature (Internal evaluation) Comparison with Competitor A

Excellent fracture resistance

New substrate with high stability provides excellent chipping resistance

Fracture resistance comparison (Internal evaluation) Average of 5 times

Cutting conditions: Vc = 250 m/min, ap = 1.5 mm, f = 0.35 mm/rev, wet Workpiece: SCM435 (with 4 slots)

Excellent adhesion resistance and chipping resistance

Specialized post-coating process prevents adhesion

Adhesion on the edge after cutting (Internal evaluation)

Specialized post-coating Less adhesion

3

Not specialized post-coating

Wide area of adhesion

Cutting conditions: Vc = 270 m/min, ap = 1.0 mm, f = 0.1 mm/rev, wet Workpiece: SCM435 (with 4 slots)

Α

Insert grades

PVD coated carbide (Turning)

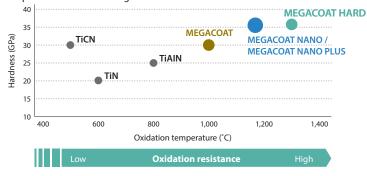
PVD coated carbide (MEGACOAT / MEGACOAT NANO)

Using a physical vapor deposition coating technology, generally because of the low processing temperature of PVD compared with CVD, PVD coated carbide features less deterioration and more bending strength. PVD coated carbide grades are coated on a very tough carbide substrate and suitable for turning.

PVD coated super micro-grain carbide

Smooth fine surface of PVD coated carbide provides good surface finish and high

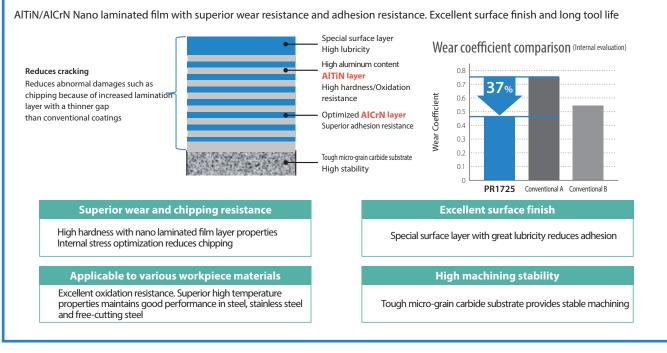
precision machining


• Stable machining with excellent toughness

Features of PVD coated carbide

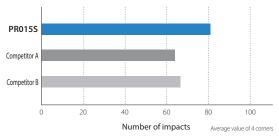
Classification	Grade	Color	Coated composition	Advantages and applications
	PR915 Super micro-grain	Bluish violet	TiAIN	Application: Stable and reliable high precision machining of steel
	PR930 Super micro-grain	Reddish gray	TiCN	Application: Low machining speed, precise machining with sharp edge
	PR1025	Reddish gray	TiCN	Application: General machining of steel and stainless steel, stable and longer tool life
	PR1115	Purple red	TiAIN	 Superior oxidation resistance with well balanced wear resistance and toughness Application: Machining of steel and stainless steel, for grooving, cut-off and threading
P	PR1215	Blackish red	MEGACOAT	 Superior wear and oxidation-resistant MEGACOAT on micro-grain carbide substrate Application: Superior adhesion resistance and longer tool life for steel and stainless steel machining
Steer	PR1625	Reddish green	MEGACOAT NANO	Adopted special nano multi-layer coating "MEGACOAT NANO" excellent in wear resistance and lubricity Stable processing with steel and stainless steel grooving - Long tool life
	PR1705 Silver MEGACOAT NANO PLUS			 High-hardness ultrafine particle carbide substrates with special multilayer nano coating MEGACOAT NANO PLUS offer excellent wear resistance and high precision machining. Application: For free-cutting steel turning. Long tool life with excellent wear resistance and high-precision machining.
	PR1725	Silver	MEGACOAT NANO PLUS	New coating technology [MEGACOAT NANO PLUS] with superior wear resistance and adhesion resistance Application : General grade for steel and stainless steel machining provides stability and longer tool life
	PR1225	Blackish red	MEGACOAT	 Superior wear and oxidation-resistant MEGACOAT on micro-grain carbide substrate Application: Light interrupted to interrupted machining of stainless steel
M	PR1515	Deddieb errore	MEGACOAT	 Improved wear resistance and stability by using fine granite carbide base metal and special nano multi-layer coating "MEGACOAT NANO" Application: For thread cutting of stainless steel
Stainless steel	PR1535	Reddish green	NANO	Nano thin multi-layer coating (MEGACOAT NANO) improved wear resistance and stability Application: Medium to roughing of stainless steel and heat-resistant alloys, cut-off of stainless steel
K Cast iron	PR905	Bluish violet	TiAIN	 Smooth fine surface PVD coated hard carbide with plastic deformation resistance Application: Suitable for machining gray and nodular cast iron
S	PR005S	Grey black	MEGACOAT HARD	 Superior high temperature properties of special carbide substrate and excellent heat-resistance of MEGACOAT HARD enables high wear resistance Application: Finish processing of heat-resistant alloys, also for high speed machining
Heat-resistant alloys	PR015S	Grey black	MEGACOAT HARD	 Superior high temperature properties of special carbide substrate and MEGACOAT HARD improved heat-resistance and stability Application: Recommended for continuous to light interruption machining and finishing of heat-resistant alloys

Properties of PVD coating


A10

PR1725

1st recommendation for steel machining Excellent surface finish and long tool life Great performance in small parts machining applications


-MEGACOAT NANO PLUS

Features of PR005S / PR015S

- 1) Improved thermal properties help to reduce sudden fracture and decrease edge wear
- Improved thermal conductivity by optimum distribution of WC coarse grains Resists heat concentration at the cutting edge to promote stable machining
- 2) Improved wear resistance with MEGACOAT HARD coating Excellent wear resistance with high-hardness and resists boundary damage with improved thermal properties

Fracture resistance comparison (Internal evaluation)

Customer

Challenges

PR1725 MEGACOAT NANO PLUS

for Steel an

Cost Reduction wit

Longer Tool Life

Cutting conditions : Vc = 25m/min, ap = 1.0 mm, f = 0.10 mm/rev, Wet CNMG120408 type Workpiece Material : Ni-based Superalloy Cylindrical workpiece with 1 flat face

PVD / CVD coated carbide (Milling / Drilling)

Insert grades

A

PVD coated carbide (MEGACOAT / MEGACOAT NANO)

PVD coated carbide grades for milling and drilling are coated on a very tough carbide substrate. Because of the low processing temperature of PVD compared with CVD, it features less deterioration and more bending strength.

CVD coated carbide

CVD coated carbide grades provide stable, efficient machining at high speeds or for heavy interrupted applications. Ti-base (TiN, TiCN) coating with superior hardness and wear resistance or ceramic-base (Al₂O₃) coating with high-thermal stability is applied on a tough carbide substrate. Superior fracture resistance and wear resistance.

Features of PVD / CVD coated carbide

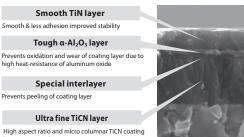
Classification	Grade	Color	Coated composition	Advantages and applications
	PR1230	Blackish red	MEGACOAT	Superior wear and oxidation-resistant MEGACOAT on a special tough carbide substrate Application: Stable and high feed milling and drilling of steel
P	PR1525	Reddish green	MEGACOAT NANO	 New coating technology (MEGACOAT NANO) is applied. Nano thin multi-layer coating performs superior wear resistance and high oxidation resistance Application: Stable and longer tool life for milling of steel and stainless steel
	CA520D	Gold	TiCN+Al ₂ O ₃ +TiN (CVD)	 Improved abrasion resistance and fracture resistance by improving high toughness Combination of high toughness substrate, toughened coating and enhanced interface allow both wear and fracture resistance Application: Drilling of steel - first recommended grade (for high speed machining)
M Stainless steel	PR1225	Blackish red	MEGACOAT	 Superior wear and oxidation-resistant MEGACOAT on micro-grain carbide substrate Application: General machining and high feed milling and drilling of steel and stainless steel
	PR1210	Blackish red	MEGACOAT	Superior wear and oxidation-resistant MEGACOAT coated on special carbide substrate Application: Highly efficient stable milling and drilling of gray and nodular cast iron
	PR1510 Reddish MEGACOAT green NANO			 New coating technology (MEGACOAT NANO) is applied. Nano thin multi-layer coating performs superior wear resistance and high oxidation resistance Application: Highly fracture resistance and wear resistance for gray and nodular cast iron
K Cast iron	CA415D		TiCN+Al ₂ O ₃ +TiN	 Special carbide substrate for cast iron, toughened coating and enhanced interface allow both wear and fracture resistance Application: Drilling of cast iron - 1st recommended material for high speed processing
	CA420M	- Gold	TiCN+Al ₂ O ₃ +TiN (CVD)	Kyocera's unique crystal control technology and advanced layer adhesion CVD coating with superior wear resistance and toughness Application: Milling of gray and nodular cast iron
S Heat-resistant alloys Titanium alloys	PR1535	Reddish green	MEGACOAT NANO	 Nano thin multi-layer coating (MEGACOAT NANO) improved wear resistance and stability Application: For milling of Ni-base heat-resistant alloys, titanium alloys and precipitation hardened stainless steel
S Heat-resistant alloys	CA6535	Gold	TiCN+Al ₂ O ₃ +TiN (CVD)	 High heat-resistance and wear resistance with CVD coating Application: For milling of Ni-base heat-resistant alloys and martensitic stainless steel
H Hard material	PR015S	Blackish Gray	MEGACOAT HARD	-Substrate with improved thermal properties reduces sudden fracture and decrease edge wear. MEGACOAT HARD coating technology delivers the high hardness and superior wear resistance -Excellent wear and chipping resistance maintains stable machining for high hard materials -Application : Difficult-to-cut materials and high hard (less than 60HRC) machining

Excellent grade for heat-resistant alloys and difficult-to-cut materials

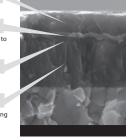
CA6535

CVD: For martensitic stainless steel and Ni-base heat-resistant alloys

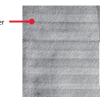
PR1535


PVD: For Ni-base heat-resistant alloys, titanium alloys and precipitation hardened stainless steel

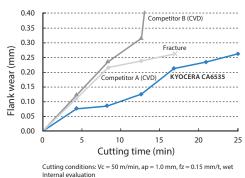
Suitable for variety of workpiece materials


Stable machining by preventing sudden insert fracture. Suitable for high-efficiency machining

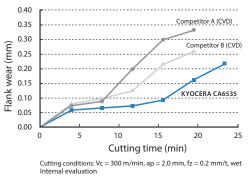
For martensitic stainless steel and Ni-base heat-resistant alloys. High heat resistance and wear resistance with CVD coating. Improved stability due to thin layer coating technology.


High aspect ratio and micro columnar TiCN coating layer improves abrasive wear resistance

PR1535


For Ni-base heat-resistant alloys, titanium alloys and precipitation hardened stainless steel. Stable and longer tool life by special nano thin multilayer coating (MEGACOAT NANO)

MEGACOAT base multi-laver composition



Tool life comparison: Longer tool life and more stable machining than competitors

Ni-base heat-resistant alloys

Martensitic stainless steel

Insert grades

Carbide

Α

Insert grades

Carbide

Uncoated tungsten carbide grade is used in a variety of applications due to its superior mechanical properties.

Features

- KW10: Suitable for machining cast iron with high hardness and toughness
- GW05, GW15, GW25: Suitable for machining cast iron, non-ferrous metals and non-metals
- SW series: Suitable for machining of titanium and titanium alloy

Features of carbide

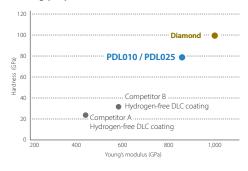
Classification	Grade	Color	Main component	Advantages and applications			
	KW10			• ISO identification symbol K carbide (K10 relevant) • Application: Machining cast iron, non-ferrous materials and non-metals			
N	GW05		ISO identification symbol K carbide (K05 relevant) Application : Excellent wear resistance for machining of cast iron and non-ferrous metal				
Non-ferrous metals	GW15		WC+Co	• ISO identification symbol K carbide (K10 relevant), tough micro-grain carbide • Application: Machining cast iron, non-ferrous materials and non-metals			
	GW25	Gray		ISO identification symbol K carbide (K30 relevant) Application: Milling operations of aluminum			
				ISO identification symbol K carbide (K05 relevant) Application: Titanium alloys for continuous machining and finishing			
S Heat-resistant alloys	SW10 (Made to order)			ISO identification symbol K carbide (K10 relevant) Application: Titanium alloys for continuous and light interrupted machining			
Titanium alloys	SW25 (Made to order)			• ISO identification symbol K carbide (K25 relevant) • Application: Titanium alloys for interrupted and light interrupted machining			

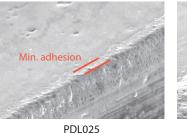
DLC coated carbide

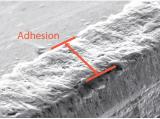
DLC coated carbide

DLC (Diamond-Like Carbon) Coated carbide is coated on carbide substrate with a thin layer of amorphous carbon.

Features


- High Hardness with Kyocera's proprietary hydrogen-free DLC coating
- Exellent surface finish achieved through anti-adhesion performance


Features of DLC coated carbide


Classification	Grade	Color	Coated composition	Advantages and applications
N	PDL010	Rainbow		 DLC coating of original technology has high hardness, excellent adhesion resistance and film peeling resistance Application: Excellent finished surface processing and long service life of aluminum alloy
Non-ferrous metals	PDL025	color		• High Hardness with Kyocera's Proprietary Hydrogen-free DLC Coating • Application: Long tool life and stable machining of aluminum alloys

Coating properties

Adhesion resistance comparison

Competitor A

 $\begin{array}{l} \mbox{Cutting conditions: } Vc = 800 \mbox{ m/min, } fz = 0.1 \mbox{ m/t, } ap \times ae = 3 \times 5 \mbox{ mm} \\ \mbox{Dry, cutter dia. } \varnothing 25 \mbox{ mm, workpiece material: } A5052 \mbox{ cutting length: } 57 \mbox{ m} \\ \mbox{ (Internal evaluation)} \end{array}$

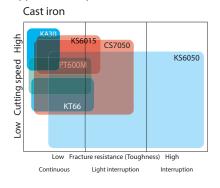
Ceramic

Ceramic

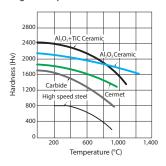
Ceramics inserts are capable of machining at high speeds. Recommended for hard turning of hardened steel or rough to finish turning of cast iron and heat-resistant alloys.

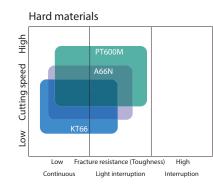
Features

- Excellent wear resistance enables high speeds machining of cast iron
- Ceramic maintains good surface finishes due to the low affinity to workpiece materials
- Silicon nitride ceramic can machine cast iron with coolant due to its superior thermal shock resistance

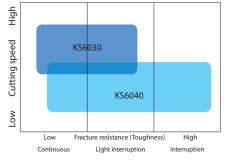

Α

Insert grades

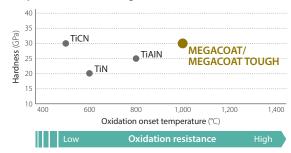

Features of ceramic


Classification	Grade	Color	Main component (Coated composition)	Coating layer	Hardness of substrate (GPa)	Fracture toughness (MPa·m ^{1/2})	Transverse strength (MPa)	Advantages and applications
	KA30	White	Al ₂ 0 ₃		17.5	4.0	750	Aluminum oxide ceramic (Al:O1) Application: Finishing of cast iron at high cutting speeds without coolant
	KS6015	Gray	Si ₃ N ₄	-	15.2	7.8	1,000	 Silicon nitride ceramic with superior wear resistance reduces heat at the cutting edge. Application : Roughing and high speed machining of cast iron (with or without coolant)
K Cast iron	KS6050	Gray	Si ₃ N4		15.6	8.0	1.200	 Silicon nitride ceramic (SisN4) Application: Roughing and interrupted machining of cast iron. Focusing on stability. (with or without coolant)
	CS7050	Grayish white	Si3N4 (Special Al ₂ 0 ₃ COAT)	Thin coating	13.0	8.0	1,200	 Silicon nitride ceramic (SisN+) + CVD Coating (Special Al203 COAT) Application: Finishing and continuous machining, and high speed and high efficient machining. (with or without coolant)
K	KT66	Black	Al ₂ 0 ₃ +TiC	-				• Aluminum oxide and titanium carbide ceramic (Al₂O₃+TiC) • Application: Semi-roughing to finishing of cast iron, and hard materials
Cast iron	A66N	Gold	Al203+TiC (TIN COAT)		20.1	4.1	980	 TiN PVD coated aluminum oxide and titanium carbide ceramic (TiN coated Al₂O₃+TiN) Application: Semi-roughing to finishing of hard materials
H Hard material	PT600M	Blackish red	Al203+TiC (megacoat)	Thin coating			-	 Heat-resistant MEGACOAT on aluminum oxide and titanium carbide ceramic (MEGACOAT Al:03+TiC) Application: Semi-roughing to finishing of cast iron, hard materials and hardened roll materials
S	KS6030	Gray	Sialon		15.2	6.0	600	SiAION Ceramic with superior wear resistance and high resistance against boundary wear Application: Finishing to medium machining of heat-resistant alloys
Heat-resistant alloys	KS6040	Brown	JIAIUN	-	16.7	7.0	900	 High stability SIAION ceramic with wear resistance and fracture resistance Application: Roughing of heat-resistant alloys

Application map



High-Temperature hardness



Heat-resistant alloys

Properties of PVD coating

CBN (Cubic boron nitride)

Insert grades

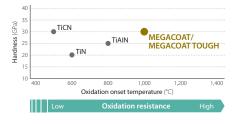
A

CBN

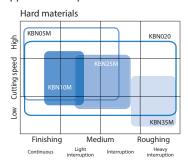
CBN (Cubic Boron Nitride) is second only to diamond in hardness, and is a synthetically produced material with high thermal conductivity.

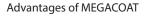
Features

- Superior wear resistance when machining hard materials
- Suitable for high speed machining of hard materials, sintered steel and cast iron
- High thermal conductivity provides stable machining

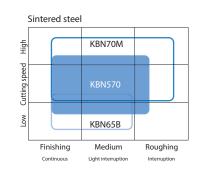

Features of CBN

Classification	Grade	Color	Ave. grain size (μm)	Hardness of substrate (GPa)	Transverse strength (MPa)	Advantages and Applications
	KBN510	Black	2	28	1,000	Excellent wear resistance and crack resistance, non-coated CBN Application: Finishing and continuous machining of hardened die steel
	KBN525	Diack	1 and under	25	1,250	Application: General purpose for hardened steel
H	KBN05M (MEGACOAT)		0.5-1.5	27	1.000	Heat-resistant MEGACOAT on highly heat-resistant CBN substrate Application: High speed finishing of hardened steel
Hard materials	KBN10M (MEGACOAT)	Blackish red	2	28	1,000	Application: High speed finishing of hardened die steel
	KBN25M (MEGACOAT)	BIACKISH red	1 and under	25	1,250	Heat-resistant MEGACOAT on micro-grain CBN with heat-resistant binder phase Application: Stable machining of hardened steel at high cutting speeds
	KBN020 (MEGACOAT TOUGH)		3	31-32	1,300	High toughness CBN coated with high wear resistance enables machining in a wide range of cutting areas Application: Continuous to interrupted maching of hardened steel
Sintered steel	KBN570	Black	2-4	34	1,350	High content CBN Application: Processing of sintered steel (burr suppression)
Sintered steel	KBN70M (MEGACOAT)	Blackish red	Z-4		1,350	Heat-resistant MEGACOAT on CBN rich substrate Application: Stable machining of sintered steel (ferrous sintered alloys)
	KBN475	Black	2	39	1,400	Excellent wear resistance due to high CBN content and special binder Application: High speed machining of gray cast iron
K	KBN60M (MEGACOAT)	Blackish red	Blackish red 0.5-6 33		1,250	Heat-resistant MEGACOAT on CBN rich substrate with hard binder phase Application: High speed finishing of gray cast iron
Cast iron	KBN900 (Tin coat)	Gold	9	31	630	TiN coated solid CBN Application: Heavy duty, interrupted machining and finishing of hardened steel, hardened roll steel and cast iron


For KBN35M, see page A18.


MEGACOAT CBN

Properties of PVD coating




Application map

- Longer tool life and high speed machining due to superior heat resistance and hardness.
- Stability improvement through prevention of crater wear (oxidation, diffusional wear)
- High thermal stability and surface smoothness provide excellent surface finish

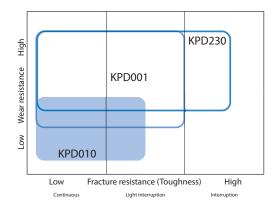
PCD (Polycrystalline diamond)

PCD

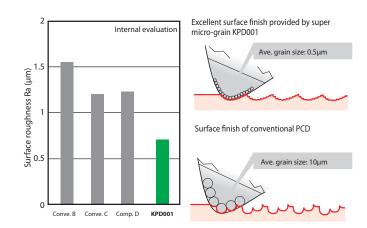
PCD is a synthetic diamond sintered under high temperatures and pressures.

Features

- Applicable for milling of non-ferrous metals and non-metals
- No edge build-up provides high precision machining
- Diversified applications for machining of non-ferrous metals and non-metals
- Finished surface will be rainbow colored (A mirror-like finished surface will not be obtained)


Features of PCD

Classification	Grade	Ave. grain size (μm)	Advantages and applications
	KPD001	0.5	 Super Micro-Grain PCD features cutting edge strength, wear resistance, fracture resistance, good edge-sharpening performance and longer, stable tool life Application: High speed machining of aluminum alloys, brass, non-ferrous metals and non-metals including plastics, and carbide.
Ν	KPD010	10	• Good wear resistance and toughness, good grindability • Application: High speed machining of aluminum alloys, brass, non-ferrous metals and non-metals including plastics, and carbide.
Non-ferrous metals	KPD230	2-30	 Superior abrasive wear resistance and toughness due to high density PCD with mixed rough and fine grains Application: High speed machining of aluminum alloys, brass, non-ferrous metals and non-metals including plastics.
	KPD250 (Made to order)	25	 Superior wear resistance due to rough grain PCD (25µm) Application: High speed machining of high silicon aluminum alloy and machining of carbide


Applications

Application map

Surface finish roughness comparison of aluminum machining

(Grain size affects surface finish quality)

Honeycomb structure CBN

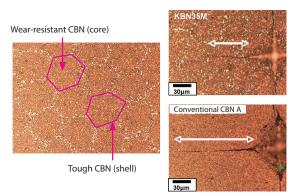
A

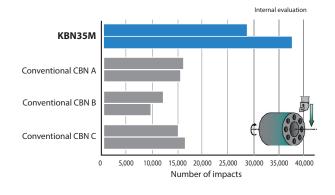
Honeycomb structure CBN

Honeycomb structure is the high structural controlled composite material consisting of a hard and superior wear-resistance core (gray portion) and a tough shell (white portion).

Features

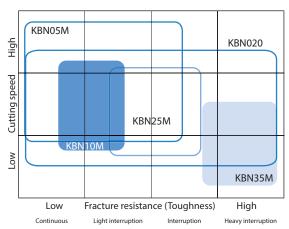
- Honeycomb structure CBN combine a hard, wear-resistant core and a tough shell into one insert.
- The tough shell stops cracks that form in the core.
- CBN is suitable for interrupted machining of exceptionally hard material




Features of honeycomb structure CBN

Classification	Grade	Color	Main component	Advantages and applications
H Hard materials	KBN35M (MEGACOAT)	Blackish red		 Honeycomb structure CBN composite material consisting of wear resistant CBN (core) and tough CBN (shell) Heat-resistant MEGACOAT on tough Honeycomb structure CBN Application: Stable machining of hardened steel at interrupted machining

KBN35M (MEGACOAT honeycomb structure CBN)


Tough CBN (shell) prevents crack growth

Application map

Hard materials

Insert material selection table

	Applications	Cutting range	Steel	Stainless steel	Gray cast iron	Nodular cast iron	Non-ferrous metals	Heat-resistant alloys	Titanium alloys	Hard materials	Sintered steel
Turning		Finishing	TN610 CCX TN620 TN60 PV710 PV720 PV730	TN610 TN620 TN60 PV720 CA6515 CA6525	KBN475 KBN60M KA30 PV7005 CA5505 CA310	TN60 PV7005 CA5505 CA310	KPD001 KPD010 PDL010	KS6040 KW10 CA6515 CA6525	KPD001 KPD010	KT66 A66N PT600M KBN05M KBN020	TN610 TN60 KBN570
		Roughing	CA510 CA515 CA025P CA530	PR1535	CA315	CA315 CA320	PDL025 KW10	PR00555 PR0155 PR1535	SW05 SW10 SW25	KBN020 KBN10M KBN25M KBN35M KBN900	KBN70M
ls		Finishing	TN610 TN620 PV710	TN610 TN620 PV720	(4210	(4210	KPD001	CA6515	KPD001	KBN05M	TN610 TN60
Small tools			PV720 PR1705 PR1725 PR930 PR1025	PR1725 PR930 PR1025 PR1225 PR1535	CA310 CA315 KW10	CA310 CA315 CA320 KW10	KPD010 PDL010 PDL025 GW05	PR1125 PR1225 PR1535	KPD001 KPD010 KW10 PR1535	KBN020 KBN10M KBN25M	KBN570 KBN70M
		Roughing Large	PR1535 TN610 TN620				KW10				
			PV710 PV720 PV730 CA515	TN60 CA6515 CA6525 PR1725	KBN475 KBN60M PV7005	PV7005	KPD001	CA6515	KPD001	PT600M KBN05M	TN610 TN60
Boring		Bore dia.	CA025P CA530 PR1705 PR1725	PR1025 PR1225 PR930 PR1535	CA310 CA315 KW10	CA310 CA315 CA320 KW10	KPD010 PDL010 PDL025 GW05	CA6525 PR1125 PR1225 PR1535	KPD010 KW10 SW05 PR1535	KBN020 KBN10M KBN25M	KBN570 KBN70M
		Small Large	PR1025 PR930 PR1535 CR9025	CR9025			KW10				
Cut-Off	alera alera	Cutting dia.	PR930 PR915 PR1215 PR1225 PR1535	PR930 PR915 PR1215 PR1225 PR1535	KW10 PR1215	KW10 PR1215	PDL025 KW10	KW10 PR1225 PR660	KW10	-	-
Cut-Off	(small diameter)	Small Depends on the workpiece material	PR1025 PR1225 PR1535	PR1025 PR1225 PR1535	KW10	KW10	PDL025 KW10	KW10 PR1025 PR1225	KW10	-	-
	FO	Glossy finish	TC40N TN620 TN90 PV7040	TC40N TN620 TN90 PV7040	PR905 PR1215	PR905 PR1215	KPD001 PDL025	PR915 KW10	KPD001 KW10	KBN510 KBN525	TC40N
Grooving		Stable	PR930 PR1115 PR1215 PR1225 PR1625	PR930 PR1115 PR1215 PR1225 PR1625	KW10 GW15	KW10 GW15	KW10 GW15	PR1215 PR1225 PR1535	PR1535	PT600M	KBN570
Threading	6	Glossy finish	TC60M PR1215 PR1115	TC60M PR1515 PR1115	KW10 GW15	KW10 GW15	KW10 GW15	KW10 GW15	KW10 GW15	-	PR1515 PR1115
Drilling		Stable Wear resistance	PR930 CA520D PR1225 PR1230 PR1535	PR930 PR1225 PR1535	CA415D PR1210 KW10	PR1210 KW10	KW10 GW15	PR1225 KW10 GW15	KW10	-	-
Milling		Toughness Finishing	TN100M TN620M PV60M	CA6535 PR1225 PR1525	PR1210 PR1510	PR1210 PR1510	KPD230 KPD001 KPD010 PDL025	CA6535 PR1225 PR1535	KPD230 KPD001 KW10 PR905	PR015S	
	ighted materials are recommended choice	Roughing	PR1225 PR1230	PR1535	KW10	KW10	KW10 GW25		PR1210 PR1535		

Highlighted materials are recommended choice.

A19

Insert grades

A

Grade properties

Cermet

Grade	Color	Main component	Coating layer	Ratio	Hardness o	fsubstrate	Fracture toughness	Transverse strength
Grade	COIOI	Main component		nalio	(HV)	(GPa)	(MPa•m ^{1/2})	(MPa)
TN610	-			6.6	1,750	17.2	6.0	2,100
TN620		TiCN		6.9	1,550	15.2	9.0	2,500
TN620M		IICN		6.9	1,550	15.2	9.0	2,500
TN6020			-	6.4	1,500	14.7	10.0	2,500
TN60	Gray			6.6	1,600	15.7	9.0	1,760
TN90		TiCN+NbC		6.4	1,450	14.2	10.0	1,960
TN100M				6.7	1,520	14.9	10.5	1,860
TC40N		TiC+TiN		6.0	1,650	16.2	9.0	1,570
TC60M		NbC		8.1	1,500	14.7	10.5	1,670

CVD coated cermet

Grade	Color	Coated composition	Coating layer	Ratio	Hardness o	fsubstrate	Fracture toughness	Transverse strength
Uldue	COIOI	Coated composition	Coating layer	natio	(HV)	(GPa)	(MPa•m ^{1/2})	(MPa)
ССХ	Gold	TiCN+Al ₂ O ₃ +TiN	Thin coating	7.0	1,500	14.7	10.0	2,600

PVD coated cermet

Grade	Color Coated composition	Conting lawor	Ratio	Hardness of substrate		Fracture toughness	Transverse strength	
Gidue		Coated composition	Coating layer	natio	(HV)	(GPa)	(MPa•m ^{1/2})	(MPa)
PV710		MEGACOAT NANO	Thin coating	6.6	1,750	17.2	6.0	2,100PV730
PV720	Gold			6.9	1,550	15.2	9.0	2,500
PV730				7.0	1,550	14.2	10.0	2,500
PV7005	Blackish red	kish red MEGACOAT		6.0	1,650	16.2	8.5	1,470
PV7040				6.0	1,650	16.2	9.0	1,570
PV90	Gold	TiN		6.4	1,450	14.2	10.0	1,960
PV60M	Gold	MEGACOAT NANO		6.6	1,600	15.7	9.0	1,760

CVD coated carbide

Grade	Color	Coated composition	Coating layer	Ratio	Hardness o	of substrate	Fracture toughness	Transverse strength
Graue	COIDI	Coaled composition	Coaling layer	natio	(HV)	(GPa)	(MPa•m ^{1/2})	(MPa)
CA310		TiCN+Al ₂ O ₃ +Ti base		15	1,570	15.4	12.0	2,780
CA315	Rose Gold			15	1,570	15.4	12.0	2,780
CA320				15	1,570	15.4	12.0	2,780
CA415D	Gold	TiCN+Al ₂ O ₃ +TiN		15	1,570	15.4	12.0	2,780
CA420M	Golu	$HCN+Al_2U_3+HN$		14.5	1,600	15.8	13.0	3,400
CA4505	Blackish gray	TiCN+Al ₂ 0 ₃	Thick coating	15.0	1,790	17.5	9.5	2,350
CA4515	DIACKISH GIAY			15.0	1,570	15.4	12.0	2,780
CA510				14.5	1,470	14.4	11.5	2,500
CA515				14.4	1,440	14.1	12.5	2,650
CA520D				14.7	1,370	13.4	16.0	3,100
CA025P				14.2	1,400	13.7	13.5	2,800
CA525	1			14.2	1,360	13.3	13.5	2,750
CA530				13.9	1,340	13.1	14.5	2,850
CA5505		TiCN+Al ₂ O ₃ +TiN		14.7	1,730	17.0	10.0	2,540
CA5515	Gold			14.7	1,550	15.2	12.0	2,750
CA5525				14.5	1,400	13.7	12.0	2,780
CA5535				14.1	1,340	13.1	16.5	2,970
CA6515			Thin coating	14.7	1,530	15.0	12.0	2,780
CA6525				14.7	1,370	13.4	16.0	3,100
CA6535				14.3	1,320	12.9	16.0	3,700
CR9025		TiCN+TiN	Thick coating	14.5	1,400	13.7	12.0	2,780

Grade properties

PVD coated carbide

Grade	Color	Coated composition	Coating layer	Ratio	Hardness of substrate		Fracture toughness	Transverse strength
Grade					(HV)	(GPa)	(MPa•m ^{1/2})	(MPa)
PR005S	Gray black	MEGACOAT HARD		15.0	1,750	17.2	8.0	2,000
PR015S	GIdy DIdCK			14.9	1,680	16.5	9.0	2,400
PR905	Bluish violet		_	14.8	1,720	16.8	9.0	2,450
PR915	Diuisii violet	TiAIN		14.1	1,700	16.7	11.0	4,140
PR930	Daddiah away	TICN		14.1	1,700	16.7	11.0	4,140
PR1025	Reddish gray			14.5	1,600	15.8	13.0	3,400
PR1115	Purple red	TiAIN		14.7	1,700	16.7	11.0	3,000
PR1210		MEGACOAT	Thin coating	14.8	1,720	16.8	9.0	2,450
PR1215	Dia Linkara I			14.7	1,700	16.7	11.0	3,000
PR1225	Blackish red			14.5	1,600	15.8	13.0	3,400
PR1230				13.7	1,450	14.2	13.0	2,250
PR1510		MEGACOAT NANO		14.8	1,720	16.8	9.0	2,450
PR1515				14,7	1,700	16.7	11.0	3,000
PR1525	Reddish green			14.5	1,600	15.8	13.0	3,400
PR1535	-			14.3	1,320	12.9	16.0	3,700
PR1625				14,5	1,600	15.8	13.0	3,400
PR1705		Silver MEGACOAT NANO PLUS		14.9	1,800	17.6	10.0	3,300
PR1725	Sliver			14.5	1,600	15.8	13.0	3,400

Carbide

Grade	Color Main component	Coating lawar	Ratio	Hardness of substrate		Fracture toughness	5 Transverse strength	
Grade	COIOI	Main component	Coating layer	NdUU	(HV)	(GPa)	(MPa•m ^{1/2})	(MPa)
KW10		WC+Co	-	15.0	1,650	16.2	10.0	1,470
GW05				14.9	1,800	17.6	10.0	3,300
GW15	Gray			14.7	1,700	16.7	11.0	3,000
GW25				14.5	1,600	15.8	13.0	3,400
SW05				15.0	1,790	17.5	9.5	2,350
SW10				14.8	1,720	16.8	9.0	2,450
SW25				14.7	1,370	13.4	16.0	3,100

DLC coated carbide

Grade	Crada	Color Coated composition	Conting lawor	Datia	Hardness of substrate		Fracture toughness	Transverse strength (MPa)	
	Color Coated composition	Coating layer	Ratio	(HV)	(GPa)	(MPa•m ^{1/2})			
	PDL010	Rainbow color	r C	Thin coating	15.0	1,650	16.2	10.0	1,470
	PDL025				14.5	1,600	15.8	13.0	3,400

-

 \oplus

 \oplus

P